
128 December 2023 (Version 1.00)

Small World Communications
SCE02C CCSDS

SCCC Encoder

28 December 2023 (Version 1.00) Product Specification

SCE02C Features
� 4 state CCSDS compatible serially concat-

enated convolutional code (SCCC) encoder
� Code rates from 0.355 to 0.899
� Data lengths from 5758 to 43678 bits
� Interleaver sizes from 8640 to 65520 bits
� Symbol interleaver sizes from 16200 to 48600

bits with QPSK, 8PSK, 16APSK, 32APSK or
64APSK modulation and 8100 coded symbols

� Optional 6–bit coded symbol or 12–bit inphase
(I) and quadrature (Q) output

� Includes 256 symbol frame marker, 64 symbol
frame descriptor and optional pilot symbols with
programmable I and Q pseudo randomiser

� Continuous coded symbol data out
� Up to 575 MHz internal clock
� Up to 1.14 Gbit/s encoding speed with 213 MHz

symbol clock
� 1191 6–input LUTs and 30 18kB RAMB18s
� Asynchronous logic free design
� Available as EDIF and VHDL core for Xilinx

FPGAs under SignOnce IP License. ASIC,
Intel/Altera, Lattice and Microsemi/Actel cores
available on request.

Introduction
The SCE02C is a 4 state systematic recursive

CCSDS [1] compatible SCCC encoder. Twenty
different interleaver sizes from 8640 to 65520 bits
are implemented. Twenty seven different code
rates R from 0.355 to 0.899 can be selected, giv-
ing bandwidth efficiencies from 0.711 to 5.392 bit/
sym, excluding header and pilot symbols.

The outer rate 1/2 code is punctured to a rate
of 2/3. The outer four bit tail punctured to three
bits. The inner rate 1/2 code uses different forms
of puncturing for the systematic and parity bits,
with the four bit tail not punctured. The interleaver
size is of size I = 1.5K+3, where K is the number
of information bits, which ranges from 5758 to
43678.

The number of coded bits is 8100m, where m
is the number of bits per symbol, ranging from m
= 2 for QPSK to 6 for 64APSK. To allow a continu-
ous output stream, ping–pong interleaver and
symbol memories are used to buffer the input data
to be encoded.

The encoded stream consists of a 256 bit
�/2–BPSK modulated frame marker, a 64 bit
�/2–BPSK modulated frame descriptor and 16 co-
deword segments (CWS). Each CWS consists of
8100 coded symbols using either QPSK (quadra-
ture phase shift keying), 8PSK, 16APSK (ampli-
tude phase shift keying), 32APSK or 64APSK
modulation. If pilot symbols are selected, each
CWS has a total of 240 pilot symbols, distributed
through the CWS in 15 groups of 16 pilot symbols.

The CWS symbols (including the pilots) are I
and Q scrambled using a programmable pseudo
randomiser, initialised to one of 218–1 = 262143
values.

Figure 1 shows the schematic symbol for the
SCE02C encoder. The EDIF core can be used
with Xilinx Foundation or Integrated Software En-
vironment (ISE) software. The VHDL core can be
used with Xilinx ISE or Vivado software. Custom
VHDL cores can be used in ASIC designs.

X[1:0]

SCLK

FR

Figure 1: SCE02C schematic symbol.

FHR

XRSTART
XA[14:0]

ACM[4:0]

PRN[17:0]

XS XF
BUSYCLK

SR

PILOT

RST

SI[11:0]
SQ[11:0]

S[5:0]
RN[1:0]

ACMO[4:0]

PR
FF

Table 1 shows the performance achieved for
various Xilinx parts with K = 43678 (ACM = 27).
Tcp is the minimum clock period over recom-
mended operating conditions. fs is the maximum
coded symbol rate. These performance figures
may change due to device utilisation and configu-
ration. Note that Zynq devices up to XC7Z020 and
from XC7Z030 use programmable logic equiva-
lent to Artix–7 and Kintex–7 devices, respectively.

SCE02CSmall World Communications

228 December 2023 (Version 1.00)

Table 1: Example performance

Part T (ns)
Speed
(Mbit/s)

fs
(Msym/s)Part Tcp (ns)

Speed
(Mbit/s)

fs
(Msym/s)

XC7S25–1 5.233 381 70.8

XC7S25–2 4.283 466 86.5

XC7A15T–1 5.362 372 69.1

XC7A15T–2 4.445 449 83.3

XC7A15T–3 3.935 507 94.1

XC7K70T–1 3.945 506 93.9

XC7K70T–2 3.340 598 110.9

XC7K70T–3 3.003 665 123.4

XCKU035–1 3.494 572 106.0

XCKU035–2 3.027 660 122.4

XCKU035–3 2.467 810 150.2

XCKU3P–1 2.186 914 169.5

XCKU3P–2 1.928 1036 192.2

XCKU3P–3 1.739 1149 213.1

Signal Descriptions
ACM Advanced Coding and Modulation Format

 (1 to 27)
ACMO ACM Output (1 to 27)
BUSY Encoder Busy (new data not accepted)
CLK Encoder Clock
FHR Frame Header Ready
FR Frame Ready

FF Frame Finish
PILOT Pilot Select

0 = No pilot symbols
1 = Pilot symbols inserted

PR Pilot Ready
PRN Pseudo Randomiser Number (1 to

262143)
RN Randomiser for I and Q (0 to 3)
RST Synchronous Reset
S Symbol (0 to 63)
SCLK Symbol Clock
SI Symbol In–phase (12–bit 2’s comp.)
SR Symbol Ready
START Encoder Start
SQ Symbol Quadrature (12–bit 2’s comp.)
X Data In
XA Data In Address (0 to 43677)
XF Data in Finish
XR Data In Ready

Encoder Operation
Figure 2 gives a simplified block diagram of the

SCE02C CCSDS SCCC encoder.

Outer Encoder
To increase encoding speed, the outer rate 1/2

four state systematic recursive convolutional en-
coder that is punctured to a rate of 2/3, is con-
verted to a non–punctured rate 2/3 encoder. For
the standard rate 1/2 code, we have

X

I&Q
Generator

ROM

Interleaver
9 16Kx1

SDPRAMs

Figure 2: SCE02C SCCC encoder

2 3
Rate 2/3

Convolutional
Encoder

3
Rate 3/6

Convolutional
Encoder

3

3

Symbol Data
Interleaver
3 24Kx2

SDPRAMs

Data
Puncturing
Generator

Data Puncturing
RAM

6 300x1 SRAMs

Mod 300
Interleaver
Address

Generator

3

Parity
Puncturing
Generator

Interleaver
Parameter

ROM

D
B
G

3x9

3x9
3x7
3x7

Interleaver
Address

Generator

3x14RA

Interleaver
Parameter

ROM

6Kx69

6Kx6

9WA

RA

D

9x14WA

Interleaver
Address

Generator

3x2

3

Data
Combining

Circuit

Parity
Combining

Circuit

3 3D WE

Symbol Parity
Interleaver

3 8Kx2
SDPRAMs

3

3
D

WE

2

Symbol
Combiner

6

Frame
Marker

Generator

Frame
Descriptor
Generator

Pseudo
Randomiser

12

12

S

12

12
SI

SQ

6

2MUX

�/2–BPSK
Generator

6

2

SR
FHR 2

PR

SCE02CSmall World Communications

328 December 2023 (Version 1.00)

y0
i � xi,

y1
i � xi � s0

i ,

s0
i�1 � xi � s0

i � s1
i ,

s1
i�1 � s0

i ,

(1)

where xi is the input data bit for 0 � i � K–1, y0
i

and y1
i are the two coded bits, s0

i and s1
i are the two

bits corresponding to the state of the encoder and
+ represents modulo–2 (XOR) addition. For K �
i � K+1, the tail is generated with

y0
i � s0

i � s1
i ,

y1
i � s1,

i

s0
i�1 � 0,

s1
i�1 � s0

i .

(2)

Incrementing i by one, we have for the main data
y0

i�1 � xi�1,

y1
i�1 � xi�1 � s0

i�1 � x i�1 � xi � s0
i � s1

i ,

s0
i�2 � xi�1 � s0

i�1 � s1
i�1 � xi�1 � xi � s1

i ,
s1

i�2 � s0
i�1 � x i � s0

i � s1
i ,

(3)

and for the tail we have
y0

i�1 � s0
i�1 � s1

i�1 � s0,
i

y1
i�1 � s1

i�1 � s0
i ,

s0
i�2 � 0,

s1
i�2 � s0

i�1 � 0.

(4)

Letting i = 2j, we have x0
j � xi, x1

j � xi�1, y0
j � y0

i ,

y1
j � y1

i , y
2
j � y0

i�1, s
0
j � s0

i , s
1
j � s1

i , s
0
j�1 � s0

i�2

and s1
j�1 � s1

i�2, for 0 � j � K/2. There is no y3
j

since y1
i�1 is punctured. This gives the equations

for the rate 2/3 encoder for 0 � j � K/2–1 as
y0

j � x0
j ,

y1
j � x0

j � s0
j ,

y2
j � x1

j ,

s0
j�1 � x1

j � x0
j � s1

j ,

s1
j�1 � x0

j � s0
j � s1

j ,

(5)

and for the tail with j = K/2 as
y0

j � s0
j � s1

j ,

y1
j � s1

j ,

y2
j � s0

j .

(6)

Interleaver
The interleaver needs to write three consecu-

tive bits into the RAM and then read three bits in
interleaved order. This is achieved by the splitting
the RAM into nine separate simple dual port ran-
dom access (SDPRAM) memories, each of size
16Kx1. We let coded bit yh

j , 0 � h � 2 be written

to one of the nine memories indicated by the pair
h,f(3j+h) where

f(i) � ��1(i) mod 3 (7)

where �–1(i), 0 � i � I–1 is the inverse function
of the interleaver function

�(i) � W[(iW � �(iW)) mod 120] � �(iW),
iW � i mod W,
iW � i div W � (i � iW)
W,
W � I
120 � (K � 2)
80.

(8)

We have 0 � �(iW) � W–1 and 0 � �(iW) �119
are lookup table constants dependent the inter-
leaver size I. We can express the inverse as

��1(i) � W[(iW��(��1(iW))) mod 120] � ��1(iW),
(9)

where �–1(i), 0 � i � W–1 is the inverse function
of �(i). Since W is a multiple of 3 we thus have

f(i) � ��1(i mod W) mod 3. (10)

Since i = WiW+iW, we have f(i) = f(iW) and thus only
need a lookup table for f(iW), 0 � iW � W–1. The
lookup table will output three 2–bit values for iW =
3j+h, 0 � j � W/3–1. Each bit yh

j , will be written
to RAM h,f(3j+h). Each RAM also has an individ-
ual write address counter, which is incremented
after each write. Due to the random nature of the
h,f(3j+h) pair, the number of writes to each RAM
will be uneven.

Table 2 shows the number of writes for each
RAM for each of the 19 interleavers. The maxi-
mum value is 67 for ACM = 26 and RAM 1,2. To
simplify the calculation of the RAM write address,
which must be incremented by the maximum ad-
dress value every W/3 clock cycles for 120 rows,
we let the increment value be equal to 68. The
total address space is then 120x68 = 8160. As a
ping–pong interleaver is used (writing to one half
while reading from the other half), each of the nine
RAMs is of size 16320x1, which is implemented
using a 16Kx1 BlockRAM.

The summation of all the different W values is
Wsum = 5367. The total address is space for the

ROM is thus Wsum/3 x 3�log23� or 1789x6 which
is implemented using a 2Kx9 BlockRAM.

For the inner encoder, three bits are read at a
time in interleaved order. Bit zh

i , 0 � i � I/3–1, 0
� h � 2 is read from RAM g(3i+h),h where

g(i) � �(i) mod 3. (11)

Similar to f(i), we have that
g(i) � �(i mod W) mod 3. (12)

Thus, the three bits zh
j , 0 � h � 2, will be read

from RAM g(3j+h),h, 0 � j � W/3–1. As the
column addresses are unevenly distributed across

SCE02CSmall World Communications

428 December 2023 (Version 1.00)

Table 2: Number of writes for RAM h,f(3j+h) and clock factor F

ACM K I W 0,0 0,1 0,2 1,0 1,1 1,2 2,0 2,1 2,2

1 5758 8640 72 10 8 6 6 10 8 8 6 10

2 6958 10440 87 7 11 11 9 9 11 13 9 7

3 8398 12600 105 14 11 10 10 10 15 11 14 10

4 9838 14760 123 11 13 17 16 15 10 14 13 14

5,7 11278 16920 141 18 16 13 14 15 18 15 16 16

6,8 13198 19800 165 20 19 16 17 17 21 18 19 18

9 14878 22320 186 20 26 16 21 20 21 21 16 25

10 17038 25560 213 24 29 18 24 20 27 23 22 26

11,13 19198 28800 240 30 23 27 23 31 26 27 26 27

12,14 21358 32040 267 28 28 33 27 36 26 34 25 30

15 23518 35280 294 31 34 33 39 35 24 28 29 41

16,18 25918 38880 324 35 37 36 36 40 32 37 31 40

17,19 28318 42480 354 36 45 37 38 33 47 44 40 34

20 30958 46440 387 38 43 48 42 43 44 49 43 37

21,23 33358 50040 417 50 48 41 42 47 50 47 44 48

22,24 35998 54000 450 52 49 49 49 48 53 49 53 48

25 38638 57960 483 55 51 55 53 57 51 53 53 55

26 41038 61560 513 64 62 45 46 58 67 61 51 59

27 43678 65520 546 64 65 53 63 53 66 55 64 63

the nine RAMs, we can’t directly use �(i). Instead,
we use �(i) which is determined using the following
algorithm, where the array alpha[i] corresponds to
�(i), alphai[i] to �–1(i), column[h,f] to the number
of writes to RAM h,f and gamma[i] to �(i), which is
the column for �(i).

for I := 0 to W–1 do
 alphai[alpha[I]] := I;
for H := 0 to 2 do
 for F := 0 to 2 do
 column[H,F] := 0;
for I := 0 to W–1 do
 begin{count}
 H := I mod 3;
 F := alphai[I] mod 3;
 gamma[alphai[I]] := column[H,F];
 column[H,F] := column[H,F]+1;
 end;{count}

For each 0 � j � W/3–1, where j = (i mod W)
div 3 and h = i mod 3, the ROM outputs three va-
lues of �(3j+h), 0 � h � 2. The maximum values
of �(3j), �(3j+1) and �(3j+2) are 63, 64 and 66, re-
spectively. Thus, we could use 6 bits for h = 0 and
7 bits for h = 1 and 2. However, as this does not
lead to a reduction in the number of BlockRAMs,
we simplify this to using 7 bits for all three values.

The three read address for 0 � h � 2 are
formed for 0 � j � W/3–1 from

RA(i) � 68[iW � �(3j � h)) mod 120] �
�(3j � h)

(13)

where 0 � i � I–1, j = (I mod W) div 3 and h = i
mod 3. As the maximum value of �(i) is 119, this
requires 7 bits for each of the three values that are
output.

In order to select RAM g(3j+h),h we need to
also output the three values for g(3j+h), which is
similar to f(3j+h) requires a total of 3x2 = 6 bits. As
shown in the next section, we calculate this from
the ROM values used in puncturing the system-
atic data.

Data Puncturing
The standard uses a fairly complex scheme for

puncturing the systematic data of the inner con-
volutional encoder. We first need to generate a
length 300 lookup table containing a puncturing
pattern of 0’s and 1’s. As we encode three bits at
a time, we need three of these lookup tables. Also,
to allow the code rate to change from one frame
to the next, we write the new pattern into one half
of a 600x1 RAM while outer encoding, and read
from the other half of the RAM while inner encod-
ing. Thus, we need a total of six 300x1 RAMs.

SCE02CSmall World Communications

528 December 2023 (Version 1.00)

For each ACM value, the standard specifies
that Ssur bits of the 300 will not be punctured. Va-
lues from Ssur = 300 for ACM = 1 and 2 to 208 for
ACM = 27 are provided. Another table is provided
where for each Ssur value from 299 down to 200,
the puncturing position is given, e.g., the positions
for Ssur = 299 and 298 are 76 and 1, respectively.
The puncturing positions are formed from address
299 down to Ssur. If Ssur = 300, no bits are punc-
tured.

To create the puncturing pattern, we first write
300 one’s into the puncturing RAM from address
0 to 299. For the ACM value, we use a small LUT
to output Spun = 299–Ssur, which ranges from –1
to 91. If Spun = –1 (represented by 127 from the
LUT) we do not write any zeros. For Spun � 0, we
use a counter that increments from 0 to Spun, writ-
ing Spun+1 zeros to the addresses given from
another LUT, e.g., we write zeros to addresses 76
and 1 for counter addresses 0 and 1.

We have the address a(k,l), k = i div W, l = i mod
W, 0 � i � I–1, to the puncturing RAM is

a(k, l) � �(k, l) mod 300 (14)

where

�(k, l) � W((k � �(l)) mod 120) � �(l). (15)

To simplify the calculation of a(k,l) we use differ-
ences. Due to the use of lookup tables for �(l) and
�(l) we let the first W initial values for 0 � l � W–1
be

a(0, l) � [(W�(l) mod 120) � �(l)] mod 300. (16)

We have the difference as

�(k�1, l)��(k, l)

��
�
�

W ; k�1��(l) � 120,
�119W ; k�1��(l) � 120,
W ; k�1��(l) � 120.

(17)

Thus, we can calculate the next values as

�(a(k, l)�W) mod 300 ; k��(l) � 119,
(a(k, l)�119W) mod 300 ; k��(l) � 119.

a(k�1, l) �

(18)

As we already have �(l), we only need �(l) = a(0,l)
from the ROM. The values of W mod 300 and
–119W mod 300 are stored in LUTs and are used
for the additions.

As we need to generate three bits in parallel,
we let l = 3j+h, j = l div 3 and h = l mod 3, where
we output �(3j+h) for 0 � h � 2 in parallel for 0 �
j � W/3–1. As the maximum value of �(l) is 299,
this requires three 9 bit values to be stored.

As we have

�(l) mod 3 � (�(0, l) mod 300) mod 3
� [�(0, l) � 300(�(0, l) div 300)] mod 3
� �(0, l) mod 3 � �(l) mod 3 � g(l)

(19)

we can use �(l) to calculate which RAM to read
from, thus reducing the size of the ROM. The total
width for the ROM is thus 3x(7+7+9) = 69.

Inner Encoder
The standard inner encoder is the same as the

outer encoder, being a rate 1/2 four state system-
atic recursive convolutional encoder. As the inter-
leaver outputs three consecutive bits in parallel,
we form a rate 3/6 encoder. This is done similarly
as for the outer encoder. From (3) and (4) and in-
crementing i by 1, we have for the main data

y0
i�2 � xi�2,

y1
i�2 � xi�2�x i�1�s0

i�1�s1
i�1

� xi�2�x i�1�xi�s1
i ,

s0
i�3 � xi�2�x i�1�s1

i�1 � xi�2�x i�1�s0
i ,

s1
i�3 � xi�1�s0

i�1�s1
i�1 � xi�1�x i�s1

i ,

(20)

and for the tail we have

y0
i�2 � s0

i�2 � s1
i�2 � 0,

y1
i�2 � s1

i�2 � 0,

s0
i�3 � 0,

s1
i�3 � s0

i�2 � 0.

(21)

Letting i = 3j, we have zh
j � xi�h as the input data,

wh
j � y0

i�h as the encoded data, w3�h
j � y1

i�h as

the encoded parity, for 0 � h � 2, s0
j � s0

i ,

s1
j � s1

i , s0
j�1 � s0

i�3 and s1
j�1 � s1

i�3. This gives
the equations for the rate 3/6 encoder for 0 � j �
I/3–1 as

w0
j � z0

j ,

w1
j � z1

j ,

w2
j � z2

j ,

w3
j � z0

j � s0
j ,

w4
j � z1

j � z0
j � s0

j � s1
j ,

w5
j � z2

j � z1
j � z0

j � s1
j ,

s0
j�1 � z2

j � z1
j � s0

j ,

s1
j�1 � z1

j � z0
j � s1

j ,

(22)

and for the tail with j = I/3 as

w0
j � s0

j � s1
j ,

w1
j � s0

j ,

w2
j � 0,

w3
j � s1

j ,

w4
j � s0

j ,

w5
j � 0.

(23)

SCE02CSmall World Communications

628 December 2023 (Version 1.00)

Parity Puncturing
Unlike data puncturing, parity puncturing is

much more elegant and simpler to implement. Let
qi be the puncturing value (either 0 or 1) for the
parity bit from 0 � i � I–1. That standard uses the
variable ei (where we have added the index i), but
to reduce complexity, we use the variable fi = ei–1.
We have that

f i�1 � (fi � �) mod I,
q i�1 � u(fi � �), (24)

where � is the number of bits to be punctured from
the I parity bits, f0 = 0, q0 = 1 and

u(x) � �1 ; x � 0,
0 ; x � 0. (25)

Note that the tail data and parity bits are not punc-
tured. As we need to output three punctured bits
at a time, we calculate the following values

mh � (h(I � �) mod I) � I,
dh � (h(I � �) div I) mod 2. (26)

for 1 � h � 3. We have

f i�h � (fi � mh) mod I,
c i�h � u(fi � mh).

(27)

For h = 1, we have that qi+1 = ci+1. However, for
qi+2 we need to also add d2 (the number of over-
flows) and subtract qi+1 (the number of previous
overflows) modulo 2. A similar operation is also re-
quired for qi+3. That is, we have

q i�1 � ci�1,
q i�2 � (ci�2 � d2 � qi�1) mod 2

� ci�2 	 ci�1 	 d2,
q i�3 � (ci�3 � d3 � qi�2 � q i�1) mod 2

� ci�3 	 ci�2 	 d3 	 d2.

(28)

That is, given fi , mh for 1 � h � 3, d2 and d2	 d3
stored in LUTs we can calculate the three following
puncturing bits. We only need to store fi+3 for the
next calculation.

Data and Parity Combining
The symbol interleaver is separated in two

non–equal halves, with the first half containing the
data and the second half containing the parity.
Thus, the data and parity bits are separately com-
bined after puncturing. That is, we combine the
three data bits zh

j , 0 � h � 2, 0 � j � I/3 with the

corresponding three data puncturing bits ph
j to

give a sequence that ranges from 0 to 3 bits. Simi-
larly, we combine the three parity bits wh

j with the

three parity puncturing bits qh
j � q3j�h to give a se-

quence that ranges from 0 to 3 bits. As the tail is

not punctured, we always write two bits for zh
I
3 and

wh
I
3.

Symbol Interleaver
The symbol interleaver first writes all the data

bits, followed by all the parity bits, column by col-
umn into a memory with m rows and 8100 col-
umns, where the number of signal points is 2m,
with m = 2, 3, 4, 5, and 6 for QPSK, 8PSK,
16APSK, 32APSK and 64APSK, respectively.
Data is then read row by row for each signal point.

However, as we need to write up to six bits at
a time, we use six separate memories to store the
data. The first three memories are used to store
the data bits and the second three memories are
used to store the parity bits.

Each RAM has a separate write address
counter for one third of the number of rows
(8100/3 = 2700) and another counter for the col-
umn. The number of columns is determined by
how many columns are used by the data and pari-
ty bits. We have

Nd � �S
8100�,
Np � �P
8100�. (29)

where Nd and Np are the number of columns for
S data bits and P parity bits, respectively. The
maximum value of S is 45429 (for ACM = 27) with
Nd = 6 and the maximum value of P is 9234 (for
ACM = 23) with Np = 2.

Thus, we use 12 bit counter for the row ad-
dress, a 3 bit counter for the data column address
and a 1 bit counter for the parity column address.
Each counter is increment according to the
number of bits being written (0 to 3) with the write
enables to each RAM being appropriately se-
lected. For example, if two data bits are being
written with the previous last bit to be written to
memory 1 at row j and column k, then the first bit
would be written to memory 2 at row (j+1) mod
2700 and column k+((j+1) div 2700). The second
bit would be written to memory 0 at its correspond-
ing row and column.

For the parity RAM, we need to also use Sm =
S mod 3 to indicate the start of the write enable
counter. Sd = S div 3 and Sm are also used to indi-
cate the initial values of the row counters. For the
first, second and third parity RAMs, the initial va-
lues are Sd + u(Sm–1), Sd + u(Sm–2) and Sd, re-
spectively.

Ideally, each data RAM would be of size
2700x6 where the row address corresponds to
one of the 2700 addresses and the column ad-
dress to one of the 6 data bits. With a ping–pong
memory, the size would be 5400x6. Each data

SCE02CSmall World Communications

728 December 2023 (Version 1.00)

RAM is implemented using three 8Kx2 memories,
with a 16Kx1 write and 8Kx2 read. Similarly, each
of the parity RAMs would ideally be of size
5400x2, which is implemented using one 8Kx2
memory with a 16Kx1 write and 8Kx2 read.

To read m bit symbol si , 0 � i � 8099, we use
the read address i mod 2700 going to all six RAMs,
reading a total of 8 bits (6 for data and 2 for parity)
from the data and parity RAM i div 2700. We use
u(i – S) to determine how we combine the 6 bit
data and 2 bit parity. For example, with ACM = 27,
if i < S, the output symbol is (d0,d1,d2,d3,d4,d5)
corresponding to the six bits selected from the
data RAM. For i � S, the output is (d0,d1,d2,d3,d4,
p0) where (p0,p1) corresponds to the two bits se-
lected from the parity RAMs.

Frame Marker
A length 256 frame marker is attached to the

beginning of each frame. This is used to allow a
demodulator to synchronise to the phase and start
of the encoded data. The marker is generated
using an 8–bit Gold code and modulated using
�/2–BPSK. The marker sequence is

s i � z0
i � z1

i (30)

where 0 � i � 255, the addition is modulo 2 and

z0
i�8 � z0

i � z0
i�4 � z0

i�5 � z0
i�6,

z1
i�8 � z1

i � z1
i�1 � z1

i�3 � z1
i�4 � z1

i�5 � z1
i�6

(31)

are the two feedback equations for polynomials
g0(x) = 1+x4+x5+x6+x8 and g1(x) = 1+x1+x3+x4+
x5+x6+x8, respectively. We have that g0(x) is a pri-
mitive polynomial that generates a length 255 se-
quence and g1(x) is an irreducible polynomial that
can generate three different length 85 sequences.
We define two 8–bit registers as

Z j
i
��7

h�0

2hz j
i�h

(32)

where 0 � j � 1. We have that

z j
i
� Zj

i
mod 2,

Z j
i�1

� 128zj
i�8

� (Zj
i
div 2). (33)

where the initial values are Z0
0 = 150 and Z1

0 = 73.

Frame Descriptor
A length 64 frame descriptor with �/2–BPSK

modulation follows the frame marker. This uses a
rate R = 7/64 orthogonal code with a minimum dis-
tance of dmin = 32 that encodes five bits for the
ACM value, one bit for PILOT, with one bit re-
served for future upgrades. The asymptotic Eb/N0
(energy per bit to single sided noise density ratio)
coding gain is 10log10(2Rdmin) = 8.45 dB. We use

a 6–bit counter to encode the descriptor where the
counter value at time i, 0 � i � 63 is

C i ��5

h�0

2hch
i ,

C i�1 � Ci � 1.
(34)

The encoded sequence is

s i � �a6 ��
5

i�0

ch
i a5�h � r imod 2 (35)

where a6 = PILOT (b6 in the standard), a4 down to
a0 corresponds to ACM[4:0] (b1 to b5 in the stan-
dard), a5 = 0 is the reserved bit (b7 in the standard)
and ri corresponds to a randomising sequence
equal to E89B1C39AC244BF5 in hexadecimal
(left most bit is r0).

For each ACM value, Table 3 gives the values
for Mod (modulation), K, I, Ssur, S, �, P, N = S+P
(total number of encoded bits), Reff = K/8100
(bandwidth efficiency, not including frame header
and pilots) and SS (Signal Set, see Symbol
Mapper section).

Symbol Combiner
The symbol combiner is used to first select the

�/2–BPSK modulation symbols used in the frame
header (while FHR is high), the 6–bit coded sym-
bols from the encoder (while SR is high) or the op-
tional pilot symbols (while PR is high). As
�/2–BPSK uses a subset of QPSK symbols (00
and 11 for even i and 01 and 10 for odd i) we repre-
sent �/2–BPSK using two–bit QPSK symbols. For
the pilot symbol, we represent this as a two bit
QPSK symbol equal to 00.

The symbol combiner also shifts the 6–bit out-
put so that the least significant bit as at the right
most position. For example, for QPSK the symbol
RAM output (s0,s1,s2,s3,s4,s5) is output as S[5:0]
= [0,0,0,0,s0,s1].

Symbol Mapper
The symbol mapper takes the 6 bit symbol

S[5:0] and according to the ACM value, outputs
the corresponding 12 bit I and Q values, using
two’s complement values. There are a total of 10
different signal sets used; one for QPSK, one for
8PSK, four for 16APSK, three for 32APSK and
one for 64APSK. Using a single LUT, would re-
quire a memory of size 236x24. However, as all
the signal sets are 90° rotationally symmetric, we
can reduce the memory address space by one
quarter to 59x22 (using 11 bits for the magnitude
of I and Q).

For QPSK, 16APSK and 64APSK, the right
most 0, 2 and four bits, respectively, are used to
address the lookup table (adding an offset depen–

SCE02CSmall World Communications

828 December 2023 (Version 1.00)

Table 3: Encoder Constants

ACM Mod K I Ssur S � P N Reff (bit/sym) SS

1 QPSK 5758 8640 300 8642 1084 7558 16200 0.71086 0

2 QPSK 6958 10440 300 10442 4684 5758 16200 0.85901 0

3 QPSK 8398 12600 274 11510 7912 4690 16200 1.03679 0

4 QPSK 9838 14760 251 12351 10913 3849 16200 1.21457 0

5 QPSK 11278 16920 234 13200 13922 3000 16200 1.39235 0

6 QPSK 13198 19800 218 14390 17992 1810 16200 1.62938 0

7 8PSK 11278 16920 292 16470 9092 7830 24300 1.39235 1

8 8PSK 13198 19800 240 15842 11344 8458 24300 1.62938 1

9 8PSK 14878 22320 250 18602 16624 5698 24300 1.83679 1

10 8PSK 17038 25560 234 19939 21201 4361 24300 2.10346 1

11 8PSK 19198 28800 221 21218 25720 3082 24300 2.37012 1

12 8PSK 21358 32040 214 22857 30599 1443 24300 2.63679 1

13 16APSK 19198 28800 255 24482 20884 7918 32400 2.37012 2

14 16APSK 21358 32040 241 25741 25383 6659 32400 2.63679 2

15 16APSK 23518 35280 230 27051 29933 5349 32400 2.90346 3

16 16APSK 25918 38880 220 28515 34997 3885 32400 3.19975 4

17 16APSK 28318 42480 211 29880 39962 2520 32400 3.49605 5

18 32APSK 25918 38880 245 31755 30137 8745 40500 3.19975 6

19 32APSK 28318 42480 234 33137 35119 7363 40500 3.49605 6

20 32APSK 30958 46440 224 34677 40619 5823 40500 3.82198 6

21 32APSK 33358 50040 217 36197 45739 4303 40500 4.11827 7

22 32APSK 35998 54000 210 37802 51304 2698 40500 4.44420 8

23 64APSK 33358 50040 236 39366 40808 9234 48600 4.11827 9

24 64APSK 35998 54000 228 41042 46444 7558 48600 4.44420 9

25 64APSK 38638 57960 220 42507 51869 6093 48600 4.77012 9

26 64APSK 41038 61560 214 43915 56877 4685 48600 5.06642 9

27 64APSK 43678 65520 208 45429 62351 3171 48600 5.39235 9

dent on the ACM value), while the two most sig-
nificant bits are used to perform a two’s comple-
ment on the I and Q magnitude values if needed.

For 8PSK and 32APSK, as there are points on
the I and Q axis, this complicates the address to
the LUT and determining the signs of the I and Q
values. A swap circuit for I and Q is also required.

The signal set is normalised so that the root

mean square (RMS) value is equal to 2� 1024 =
1448.15. For example, QPSK has points at

(1024,1024), (–1024,1024), (–1024,–1024) and
(1024,–1024).

For 16APSK, 32APSK and 64APSK the signal
points are distributed in rings with equidistant sig-
nal points in each ring. The ring ratio is defined as
�r = Rr+1/R1, where Rr, 1 � r � m–2 is the ring ra-
dius from the inner ring with radius R1 to the outer
ring with radius Rm–2. Thus, 16APSK has two
rings with �1 = R2/R1, 32APSK has three rings with
�1 and �2 = R3/R1 and 64APSK has four rings with

SCE02CSmall World Communications

928 December 2023 (Version 1.00)

�1, �2 and �3 = R4/R1. Table 4 gives the values
for �1, �2 and �3 for the signal set indicated by SS.

Table 4: Signal Sets

SS Signal Set �1 �2 �3

0 QPSK

1 8PSK

2 16APSK 3.15

3 16APSK 2.85

4 16APSK 2.75

5 16APSK 2.60

6 32APSK 2.84 5.27

7 32APSK 2.72 4.87

8 32APSK 2.54 4.33

9 64APSK 2.73 4.52 6.31

Pseudo Randomiser
The I and Q values of the coded symbols and

pilot are pseudo randomised using an 18–bit Gold
code. The randomiser outputs are defined by

r0
i � z0

i �z1
i ,

r1
i � z0

(i�217) mod 218�1
�z1

(i�217) mod 218�1

� z0
i�15�z0

i�6�z0
i�4�z1

i�15�z1
i�14�z1

i�13�
z1

i�12�z1
i�11�z1

i�10�z1
i�9�z1

i�8�z1
i�6�z1

i�5

(36)

where 0 � i � 129599+3840a6 (16 codeword
segments of 8100 symbols and 240 pilots each)
and

z0
i�18 � z0

i � z0
i�7,

z1
i�18 � z1

i � z1
i�5 � z1

i�7 � z1
i�10

(37)

are the two feedback equations for polynomials
g0(x) = 1+x7+x18 and g1(x) = 1+x5+x7+x10+ x18,
respectively. We define two 18–bit registers as

Z j
i
��17

h�0

2hz j
i�h

(38)

where 0 � j � 1. We have that

z j
i
� Zj

i
mod 2,

Z j
i�1

� 217z j
i�18

� (Z j
i
div 2). (39)

where the initial values are Z0
0 = PRN[17:0] > 0 and

Z1
0 = 218–1 = 262143. The standard specifies a

value n, 0 � n � 218–2, that is used to determine
PRN[17:0]. If we define Z0

0 = 1, then PRN[17:0] =
Z0

n. For example, if n = 1, then PRN[17:0] = 217.
We have that the output RN[1:0] = [r1

i , r
0
i]. The

I and Q outputs from the LUT are randomised ac-
cording to Table 5. Randomisation is applied to all
coded and pilot symbols, but not to the frame
header symbols.

Table 5: I and Q randomisation

RN[1:0] I[11:0] Q[11:0]

0 I Q

1 –Q I

2 –I –Q

3 Q –I

Encoding Operation
The input data X[1:0] = Xi = [x1

i ,x
0
i] = [x2i�1,x2i],

0 � i � K/2–1, where i corresponds to XA[14:0],
is input two bits at a time to the outer rate 2/3 con-
volutional encoder and into one half of the inter-
leaver RAM. The other half of the interleaver
memory has input data read into the inner rate 3/6
convolutional encoder in each CLK cycle.

The BUSY output indicates when the encoder
can accept data. When high this indicates that
new data must not be input to the encoder. That
is, START must remain low while BUSY is high. If
BUSY is low, the START signal is used to start the
encoder by going high for one CLK cycle.

Figure 3 illustrates the encoder input timing.
XR will go high one CLK cycle later after START
goes high and will stay high for K/2–1 CLK cycles.
The first data input must be input one CLK cycle
after START and must be continuously input for a
total of K/2 CLK cycles. A data address output
XA[14:0] is provided for reading data from an ex-
ternal synchronous read input memory. Signal
START and XR can ORed together to form the
read enable.

When XA = K/2–1, XF will go high for one CLK
cycle. BUSY will then go high for one CLK cycle
while the tail bits are calculated. If the other half of
the Input RAM is available, BUSY will go low, indi-
cating that the next block may be input. If both
halves of the RAM are full, then BUSY will stay
high. BUSY will not go low again until one of the
halves of the RAM becomes available. If BUSY is
low, START can go high. To ensure a continuous
output, data should be input as soon as possible
after BUSY goes low. Figure 3 shows START
going high again for the case where BUSY = 0.

Inputs X[1:0], START, ACM[4:0] and PILOT
must be synchronous to CLK. Outputs XA[14:0],
XR, XF and BUSY are synchronous to CLK. Inter-
nal encoding uses CLK.

The input data can be input in any ACM order.
That is, it is not necessary to wait for the encoder
to output the last block of one code before chang-
ing to another code. If changing the code, the en-
coder parameters ACM[4:0] and PILOT must stay
constant from the time START goes high to until

SCE02CSmall World Communications

1028 December 2023 (Version 1.00)

CLK

Figure 3: SCCC encoder input timing (ACM = 1).

X X0 X1 X2

...

... X2875 X2876 X2877 X2878

...START

X3

XR ...

XA ...0 1 2 3 2876 2877 2878 04

If BUSY=0

1

X0

...BUSY

XF ...

ACM,
PILOT

...

0

If Interleaver RAM full

one CLK cycle after XF goes high. As the frame
header is only inserted every 16 codeword seg-
ments (CWS), ACM[4:0] and PILOT should only
be changed after multiples of 16 CWS have been
input.

Input PRN[17:0] is synchronous to SCLK and
must not be changed during encoding. Outputs
SI, SQ, S, RN, ACMO, FR, FHR, SR, PR and FF
are synchronous to SCLK.

Figure 4 illustrates the encoder output timing.
The frame ready signal FR goes high when data
is ready to be output. The user can select either
the symbol inphase SI[11:0] and symbol quadra-
ture SQ[11:0] values, or the symbol S[5:0] values
and scrambling sequence RN[1:0]. If frame head-
er ready FHR or pilot ready PR are high then
S[1:0] should be used to select a QPSK output.
For FHR high, the QPSK points selected by S[1:0]
will effectively produce a �/2–BPSK modulated
signal. If symbol ready SR is high, the appropriate
modulation as indicated by ACMO[4:0] should be
selected. For SR and PR high, the I and Q values
produced from S[5:0] should be scrambled ac-
cording to Table 5.

The encoder will first produce a 256 symbol
frame marker and 64 symbol frame descriptor.
The encoder will then output 16 CWS with each
CWS having 8100 code symbols plus 240 pilot
symbols if PILOT = 1. The total number of sym-
bols in each frame is 256+64+16(8100+240a6) =
129920+3840a6.

If PILOT = 1, each CWS is subdivided into 15
subsections. Each subsection consists of 540
code symbols followed by 16 pilot symbols. Be-
fore scrambling, a pilot symbol is equal to point 00
of the QPSK signal set.

If data is input at an insufficient rate into the en-
coder, FR will go low after one and before 16
CWS. That is, the number of symbols output will
be 320+c(8100+240a6), where 1� c � 16. Once
sufficient data has been received, a new frame will
be output, begining with the frame marker.

Encoder Speed
To ensure that a continuous output is formed,

The total time to input the data must not exceed
the time to output an encoded stream. The input
time is limited by the inner encoder and is equal to
(K/2+8)Tc+2Ts where Tc and Ts are the clock pe-
riods of CLK and SCLK, respectively.

The extra clock cycles consist of one CLK
cycle for encoding the tail for the outer encoder,
two CLK cycles to read the inner encoder inter-
leaver parameters, two CLK cycles to read the
data from the interleaver RAM, one CLK cycle for
encoding the tail for the inner encoder, two SCLK
cycles to start outputting the encoded symbols
(going from the CLK to the SCLK domain) and two
CLK cycles to indicate that inner encoding has
completed (going from the SCLK to the CLK do-
main).

SCE02CSmall World Communications

1128 December 2023 (Version 1.00)

SI, SQ,
S, RN

SCLK

Figure 4: SCCC encoder output timing (ACM = 1, PILOT = 0).

FR

S0

...

...

...S1 S3 S0

FF

S1S2

1 1ACMO

S129916 S129917S129918 S129919

FHR ...

SR

When sending signals from the CLK to SCLK
domain and vice–versa, this must done only from
FF to FF, with no logic in between, otherwise
glitches from the LUT outputs can cause incorrect
operation. Thus dual FF falling edge detectors are
used to indicate the end of inner encoding.

The minimum output time is equal to
(8100+240a6)Ts where a6 = PILOT. Thus, we
have

(K
2�8)Tc�2Ts � (8100�240a6)Ts. (40)

Thus, if given fs = 1/Ts (SCLK frequency), the mini-
mum fc = 1/Tc (CLK frequency) is given by

fc �
(K
2�8)fs

8098 � 240a6
� F(a6)fs. (41)

Table 6 gives the value of the clock scaling factor
F(a6) for K and PILOT. If F � 1, the maximum en-
coding speed is determined by CLK and we have

fe � K
(K
2�8)Tc�2Ts

� Kfc

K
2�8�2F(a6)
. (42)

If F < 1 the maximum encoding speed is deter-
mined by SCLK and we have

fe �
Kfs

8100 � 240a6
. (43)

Table 6 also gives G(a6) = fe/fc and H(a6) = fe/fs .
The factor G is useful for determining the maxi-
mum encoding speed when CLK limits the encod-
ing speed. The factor H is useful when a fixed
SCLK is used for all coding schemes.

For example, if fs = 100 MHz, we require fc �
F(0)fs = 269.783 MHz with data rates ranging from

69.041 Mbit/s (ACM = 1, PILOT = 1) to 539.235
Mbit/s (ACM = 27, PILOT = 0).

Encoder Delay
The total encoder delay can be separated into

two parts. This is the outer encoder delay Ti and
inner encoder delay To. Each delay is equal to

T i � (K
2 � 2)Tc,
To � (K
2 � 6)Tc � 5Ts.

(44)

The total encoder delay is then

Te � (K � 8)Tc � 5Ts. (45)

Depending on the phase between CLK and
SCLK, the actual encoder delay will vary from
Te–Ts to Te.

Ordering Information
SW–SCE02C–SOP (SignOnce Project License)
SW–SCE02C–SOS (SignOnce Site License)
SW–SCE02C–VHD (VHDL ASIC License)

All licenses include EDIF and VHDL cores.
The SignOnce and ASIC licenses allows unlimited
instantiations. The EDIF core can be used for Vir-
tex–2, Spartan–3 and Virtex–4 with Foundation or
ISE software. The VHDL core can be used for Vir-
tex–5, Spartan–6, Virtex–6, 7–Series, UltraScale
and UltraScale+ with ISE or Vivado software.

Note that Small World Communications only
provides software and does not provide the actual
devices themselves. Please contact Small World
Communications for a quote.

SCE02CSmall World Communications

1228 December 2023 (Version 1.00)

Table 6: Clock scaling factor F(PILOT) = fc/fs, G(PILOT) = fe/fc and H(PILOT) = fe/fs.

ACM K F(0) F(1) G(0) G(1) H(0) H(1)

1 5758 0.35651 0.34625 1.99421 1.99422 0.71086 0.69041

2 6958 0.43060 0.41821 1.99517 1.99517 0.85901 0.83429

3 8398 0.51951 0.50456 1.99595 1.99596 1.03679 1.00695

4 9838 0.60842 0.59091 1.99651 1.99651 1.21457 1.17962

5,7 11278 0.69733 0.67726 1.99692 1.99693 1.39235 1.35228

6,8 13198 0.81588 0.79240 1.99733 1.99734 1.62938 1.58249

9 14878 0.91961 0.89314 1.99760 1.99761 1.83679 1.78393

10 17038 1.05298 1.02267 1.99788 1.99788 2.10346 2.04293

11,13 19198 1.18634 1.15219 1.99809 1.99809 2.37012 2.30192

12,14 21358 1.31971 1.28172 1.99826 1.99826 2.63679 2.56091

15 23518 1.45307 1.41125 1.99839 1.99840 2.90346 2.81990

16,18 25918 1.60126 1.55517 1.99852 1.99853 3.19975 3.10767

17,19 28318 1.74944 1.69909 1.99862 1.99863 3.49605 3.39544

20 30958 1.91245 1.85740 1.99872 1.99873 3.82198 3.71199

21,23 33358 2.06063 2.00132 1.99879 1.99880 4.11827 3.99976

22,24 35998 2.22364 2.15963 1.99886 1.99887 4.44420 4.31631

25 38638 2.38664 2.31794 1.99893 1.99893 4.77012 4.63285

26 41038 2.53482 2.46186 1.99897 1.99898 5.06642 4.92062

27 43678 2.69783 2.62017 1.99902 1.99903 5.39235 5.23717

References
[1] Consultative Committee for Space Data

Systems, “Recommendation for space data
system standards: Flexible advanced coding
and modulation scheme for high rate tele-
metry applications,” CCSDS 131.2–B–1,
Blue Book, Mar. 2012.

Small World Communications does not as-
sume any liability arising out of the application or
use of any product described or shown herein; nor
does it convey any license under its copyrights or
any rights of others. Small World Communica-
tions reserves the right to make changes, at any
time, in order to improve performance, function or
design and to supply the best product possible.
Small World Communications will not assume re-
sponsibility for the use of any circuitry described
herein. Small World Communications does not re-
present that devices shown or products described
herein are free from patent infringement or from
any other third party right. Small World Communi-
cations assumes no obligation to correct any er-

rors contained herein or to advise any user of this
text of any correction if such be made. Small
World Communications will not assume any liabili-
ty for the accuracy or correctness of any engineer-
ing or software support or assistance provided to
a user.

� 2023 Small World Communications. All
Rights Reserved. Xilinx, Spartan, Virtex,
7–Series, Zynq, Artix, Kintex, UltraScale and Ul-
traScale+ are registered trademarks and all XC–
prefix product designations are trademarks of Ad-
vanced Micro Devices, Inc. and Xilinx, Inc. All
other trademarks and registered trademarks are
the property of their respective owners.

Small World Communications, 6 First Avenue,
Payneham South SA 5070, Australia.
info@sworld.com.au ph. +61 8 8332 0319
http://www.sworld.com.au fax +61 8 7117 1416

Revision History
� 1.00 28 Dec. 2023. First release.

