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Abstract — Theimplementation and perfor mance of aturbo/M AP decoder isdescribed.
A serial block MAP decoder operating in thelogarithm domain isused to obtain avery high
per for mance tur bo decoder. Programmable gate arrays and EPROM s allow the decoder to
be programmed for almost any codefrom 4 to 512 states, rate 1/3torate 1/7 (higher ratesare
achieved with puncturing), and interleaver block sizesto 65,536 bits. Seven decoding stages
wereimplemented in parallel. For rate 1/3 and 1/7 16 state codes with an interleaver size of
65,536 bits and operating at up to 356 kbit/s the codec achieved an E,/Ng of 0.32 and —0.30
dB, respectively for aBER of 10°. BER’sdown to 10~/ werealso achieved for asmall increase
in Ep/Ng. An efficient implementation of a continuous M AP decoder isalso presented, along

with a synchronisation technique for turbo decoders.

Index Terms— turbo coding, M AP decoding, synchronisation.

I. INTRODUCTION

RROR control coding aims to correct errors caused by noise and interferendigitab
communicationscheme. For power limited schemes, theggnper bit to single sided nois

densityratio (&,/Np) is desired to be as low as possible. Good examples of this are satellite and space
communicationswvhere fairly low bandwidtrefficiencies K, in bits transmitted per signalling

interval or bit/sym) of 0.1 to 2 bit/sym are used.
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Coding adds redundancy usingpecial codes. A decoder will then use this redundant
informationto correct as many errors as possible. Shannon [1] showed that for an additive white

Gaussiamoise channel, the smallds/Ng that can be obtained for reliable transmission is

2K —1
Ep/Ng = . (1)

AsK approaches 0 or the required bandwidth approaches infiretgmallest value &,/Ng is In 2

or approximately —1.59 dB. A typical schermech as uncoded quadrature phase shift keying
(QPSK)with K = 2 bit/sym requires a,/Ng of 9.6 dB for a bit error ratio (BER) of 19 Figure
1 plotsK versuse,y/Ng showing the Shannon capacity curve fromaidl the capacity curve when
QPSKmodulation is used [2]. Also plottede the performances of uncoded QPSK and some other
codingschemes at a BER less than or equ&0t8. Note that the dyager and Galileo schemes use
binaryphase shift keying (BPSK) which would result in their bandwidtbiehcies being reduced
by half. Howeversince Gray mapped QPSK can achieve the same performance as BPSK with twice
the bandwidth diciency, we plot the Wdyager and Galileo schemes using QPSK.

Theindustry standard code for satellite communications is a rate 1/2, 6etateystematic
convolutionalcode [3] with a soft—decisionitérbi decoderThis code can achieve Bg/Ng of 4.2
dB at a BER of 1¢P, giving a 5.4 dB coding gain. lpractise, the use of three bit soft-decisions
andother quantisation ffcts in the decoder result in a 0.2 dB performance loss. Another 0.2 dB
may be lost due to the use of fdifential encoding toesolve 180 phase ambiguities in the QPSK
signalset.

To obtain better performance, the standard code has been concatenatdgleer8olomon
(RS) outer code. The most famous example is the (255,223)8GR& code with depth eight
interleavingused on the &4ager space probes [3,4]. This scheme can achigyggnof 2.53 dB
ata BER of 16% andK = 0.875bit/sym. A more advanced scheme uses a rate 1/4, 8192 state,
non-systematiconvolutional inner code and a time varying, depth eight R outer code with
redundancyprofile (94,10,30,10,60,10,30,10) givirag(255,223.25) code on average [5]. Four
stagef iterative decoding iased to obtain aB,/Ng of 0.58 dB at a BER of t@andK = 0.438
bit/sym. This is the most powerful code currently in use and is 1.5 dB from Shannon capacity at
K = 0.438 bit/sym.

In 1993, Berrou et al. published a pagescribing a new coding scheme called “turbo—codes”
[6]. Arate 1/2 code is described that achieved the amazing performdg¢seof 0.7 dB at a BER
of 107, This is only 0.7 dB and 0&B from Shannon and QPSK capagisspectivelyatk = 1

bit/sym. The encoder consists of two parallel concatenated systematic convolutional encoders



separatedby a random interleaverhe code in [6] used two punctured 16 state codes and a 65,536
bit interleaverThis code is shown as TC1 in Figure 1.

Decodingis performed iterativelyEach systematic code is decoded using a soft—in soft—out
(SISO)decoderThe output of the first decoder feeds into the second decoder to forturboe
decoderteration. Eighteen iterations were performed in [6]. The SISO decmsger in [6] is a
modification of the maximum a posteriori (MAP) decoding algorithm [7]. A similar iterative
decodingtechnique is described l6yallager in his 1962 paper on low density parity check codes
[8]. Each parity biand its associated checked information bits is treated as a sngld plock
code. A simple soft—output MAP decoding algorithm is used for each of the parity bits. A second
SISOMAP decoder is then used to decode the information bit associated wjithatity check
bits. The process then repeats.

The MAP algorithm finds the most likely information bit to have been transmiittaccoded
sequenceThis is unlike the Werbi algorithm [9)which finds the most likely sequence to have been
transmitted When the decoded BER small, there is a negligible error performancéediince
betweerthe MAP and \terbi algorithms. Since the MAP algorithm is considerably more complex
than the VWerbi algorithm it has thus beend@ly ignored. Howeveat lowE,/Ng and high BERs,

MAP can outperform soft—outpuitérbi by 0.5 dB or more. For turbo codes this is very important
sincethe output BERS from the first stages of iterative decoding can be very high. Thus any
improvementhat can be obtainedthiese high BER'will directly result in performance increases.

A practical application of turbo/MAP decoders for satellite communications is given in [10].
Variousturbo coding schemes were investigated to achieve 2 bit/sym bandJicidney over a
high speed mobile satellite link. Using a rate 1/2 turbo code with a 4000 bit block size, 8 iterations,
and16QAM modulation, aii/Ng of 3.25 dB could be achieved over an ideal@N channefor
aBER of 10°. This is only 1.5 dB from Shannon capacity at 2 bit/sym. This code is shown as
(2,1,4;12,8,M)16QAMnN Figure 1. The notatiomk,v;m,,j) is used to describe a turbo code with
n = number of coded bit& = number of information bits (the code r&e k/n), v = memory of
individual encoders (the number of states is equal’yom = log, N; whereN, is the interleaver
size,| = number of decoder iterations, apnd M or V indicates MAP or SQ¥ decoders,
respectively.

The MAP algorithmdoes not have to be used in a turbo decaddes simpler soft—output
Viterbi algorithm (SOYA) [11-14] can be also used. Howewsnce the output of SG\Mdoes not
provideas good a statistiess MAP and makes more errors, degradations of about 0.8 dB can be

expectedn overall performance [15]. S@VWhas been used in [16] to implement a turbo decoder



ona chip. Tvo punctured eight state codes were used to obtain a rate 1/2 turbo code which achieves
anEy/Np of 2.6 dB at a BER df0>. This is almost the same performance of the more complicated
Voyagercode! The interleaver size is 1024 bits and 2.5 iterations (five\3l@voders) were used.

The code is shown as TC3 in Figure 1.

A single iteration on a chip was implemented in [17]. This chip consists of two 16 state SOV
decodersind a 2048 bit interleaver/deinterleaveperformance of,/No=1.7 dB ataBER = 18
is achieved after five iterations for a rate 1/2 turbo code. This is TC2 in Figure 1.

An obstacle to implementing the code in [6] is its sheer complekitg MAP algorithm
describedin [6] is very complex and is not very amenable to hardware implementation. By
operatingthe algorithm in the logarithm domain [18,19], the complexity can be greatly reduced.
In this paper welescribe the implementation and performance of a turbo/MAP decoder which can
implementthe code in [5]. The MAP decoder was designed to be very flexible and can be
programmedo operate from 4 to 512 statesd from rate 1/2 to rate 1/4. Punctured codes can also
beimplemented. The decoding speed ranges from 17.7 kbit/s for 512 states to 624.4 kbit/s for 4
statesA 16 state code operates at 356.8 kbit/s.

We first give the derivation of the MARg—MAR and sub—MAP decoding algorithms. This
is followed by a description of an implementation of the log—Méddrithm. \\é then describe the
iterative turbo decoding algorithm and give @escription of its implementation. Actual
performancecurves of the decoder are presented followed by some comments on continuous

decodingand synchronisation.

II. THE MAP, LOG—MAP AND SUB—MAP ALGORITHMS
We present here a full derivation of the MAP decoding algorithm for systematic convolutional
codeson an additive white Gaussian nois®(&N) channel. The derivation is similar to that in [18]

with the final presentation of the algorithm being slightly simpler than the traditional presentations.

A. The MAP Decoding Algorithm

The origin of the MAPalgorithm belongs to Chang and Hancock [20] who developed it to
minimise the symbol (or bit) error probability for an inter—symbol interference (ISI) channel.
SimultaneouslyBahlet al. [21] and McAdam et al. [22] developed the algorithm for use on coded
channels. The MAP algorithm that was presented in [6] for systematic convolutional codes is very
complicatedA simplified version of this algorithm is given in [18]. HoweMgerrou et al. changed
overto the more traditional presentation [15,23] of the algorithm in [24].

For an encoder witlr memory cells, we define the encoder state at kinkg, as av—tuple,

dependingonly on the output of each delay element. The information bit akiidags associated



with the transition from tim& to timek+1 and will change the encoder state figto S+ 1. Also
supposéhat the information bisequenced} is made up ofN—v independent bitsk, taking
values0 and 1 witha priori probability (APrP)¢? andé, respectively £ + ¢ = 1). We let the
encodeinitial stateS; be equal to zero. The lasinformation bits @y,_, . ; to dy) are set to values
thatwill force the state to O at tinfé+1 (i.e.,Sy+1 = 0). This will slightly reduce the rate of the
encoder.

We consider a rate 1/2 systematic feedback encoder whose outputslaatert@ée uncoded
databit, dk, and the coded bitx. These outputs are modulated with a BPSK or QPSK modulator

and sent through anMAGN channel. At the receiver end, we define the received sequence

RY = (Ry, .., Ry -, Ry, (2)

whereR = (%, Yk) is the received symbol at tinkex, andyi are defined as
X = (2d, — 1) + p,, 3)
Yi = (2c — 1) + g, (4)

with pc andag being two independent normally distributed random variablesuaiiances2. We
definethelikelihood ratig Ax associated with each decodeddjits
_ Pi(dy = ORY
< Py(dy = 1R’
whereP,(d, = i|RT), i = 0,1 is thea posteriori ppbability (APoP) ofthe data bitk. The APoP

(5)

of a decoded data l can be derived from the joint probability defined by

A = Py(dy = 1,5 = mRY), (6)

and thus the APoP of a decoded data jpis @qual to
Pi(dy = iIRY) = > 4™ (7)

m

wherei = 0,1 and the summation is over Zllencoder states. From (5) and (7),Abassociated

with a decoded bt can be written as

>

A’k = m 1 . (8)
Zlk’m
m
The decoder can make a decision by compadiirig a threshold equal to one
N 0 . l 2 1,
de=1 . " (9)
1; 4 <1

Using Bayes’ rule, the joint probability from (6) can be rewritten as follows

Am = Py(d, = i,S = mRY)/P(RY),



= PR, = 1,5 = mRMP(RY, ,|d, = i,S = mR))
X Pr(d = 1,5, = mRY/PRD). (10)
We have
PR Yde = 1,5 = mRY) = P(RETYS = m) = af (11)
sincethe assumptiothatS, =mimplies that events before tirkare not influenced by observations
aftertimek. We definea as the forward state metric at titknand staten. Similarly, we have
Pr(RY, 1ld = 1, S¢ = MR) = PR, 1IScxq = f(i,m) = g4, (12)
wheref(i,m) is the next state given an inpwnd staten. We definef)! as the reverse state metric

attimek and staten. We define the branch metric as

O™ = Pi(dy = 1,5 = mRy). (13)
Substituting (1) to (13) in (10) we obtain
A" = apomBrm /PyRY). (14)
This result can be used to evaluate (8) as
0,maf (0,
Z“E“ékmﬁ bl
A= , (15)
1 mpRf(1,m)
zaﬁékmﬂ k1
m

wherethe summations are over &t states. The usual expression for (15) involves a double
summationin both the numerator and denominator

We want to show that {} can be recursively calculatedeWan express 1} as

al = PR = m)

1
= > > Pddc_1 =], = M, RS = m)

m j=0

1
= Z z P(R{AS = mdy = [,Sg = M, R_)P(dyy = .S = M, RIS = m)
m j=0
1
= > PURES,; = b, M)Pr(diy = |,Scq = b(, M. R, _y)
j=0
1

= > ¢ IPM, (16)
j=0
wherethe first summation is froorm’ = 0 to 2"—1andb(j,m) is the state going backwards in time
from statem on the previous branch corresponding to inplit a similar way we can recursively
calculatethe probability3 ' from the probability3}, ;. Note that this is possible only after thigole

block of data is received. Relation (12) becomes



=)
=3
I

P(RYIS, = m)
1
= Zzpr(dk =St = m’,Rl':'|Sk =m)

m’jO

= ZZ P(RY, 1ISc = M d = ,Scr1 = M, RIP(dy = j,Scp1 = M, RIS = m)
ni =

= Z P(RY, 4[Scr1 = F(, M)Pi(d = |, S = MRy
1

= D oY, (17)
j=0
Figure2 gives a graphical illustration of the calculatiom{ffandgy". It is very similar ta¢he
architectureof the Mterbi algorithm. Where we add the branch metric to the state metric in the
Viterbi algorithm, we multiply in the MAP algorithm. Where we find the minimum of the path
metricsin the \iterbi algorithm, we add in the MAP algorithm. Thus, the add—compare—select
(ACS) operation in the Kerbi algorithm becomes the multiply—add (MA) operation in the MAP
algorithm.

The MAP algorithm works by first calculating the"s in the forward direction and storing

theresults. Thef"s are then calculated in the reverse direction. An important observation is that

theol 310" term in (17) is also used in the calculatiort pin (15). Thus, while thg}"s are being
calculated A, should be calculated at the same time, reusin@{(ﬂ“l@fk(i”l“) terms to minimise¢he

numberof computations. If the block starts in state zero then we initiaflse 1anda]' = 0for
m = 0. A similar initialisation is performed fofy], , if the block ends in state zero. If the block

ends in an unknown state (which occurs when there is no terminationjhgn= 1 for all m.
The branch metricé{('m canbe determined from the transition probability of the discrete
memorylesghannel and the APrProm (13) and using Bayes’ rule we have
O™ = Pr(dy = i,S, = MRy
= Pr(RJdy = i, S, = mP(S, = mld, = i)P(dy = i)
= Pr(xddy = 1, S = mPr(yddy = i, S = m)¢,/2", (18)
sincepk andg are independent, the current state is independent of the current input and can be in

anyof the2” states, an@{( = Py(dy, = i) by definition. For an WGN channel with zero mean and

varianceo? (18) becomes

im _ CL 1 N 2 1 1 _ im _ 2
(5k = \/Eoexp( 202(Xk (2 - 1)) )dxk—\/gaex;{ 2Oz(yk (2c 1)) )dyk



= i ZiexdLxd + yic'™), (19)
wherex is a constant]x anddy are the diferentials of andyk, L = 2/02, andc''Mis the coded
bit givend, =i andS, =m. Since the constany in (19) doesrt'affect 4, in (15) we can normally
ignorexy. In practise though, when calculating the forward and reverse state metricsyyeelet
equal to the inverse of the ¢gast previous state metric. This normalises the new state metrics and
ensureghat the state metrics do not under or overflow

If we substitute (19) into (15) we obtain

0 > arexpleyc®mp O
Ay = C—Eexp(— LoX,) —

> aMexplLay,ctmprLm
m

= Cyexp(- chk)CI’(, (20)
whereg, = gﬁk’/gﬁ is the input APrP ratio ang}. is the outpuextrinsic informationOne can think
of £, as a correction term that changes the input information so as to minimise the probability of

decodingerror This extrinsic information is very important in turbo decoding as it allows the

correctiongerms to be passed from one decoder to the next.

B. The log—MAP Decoding Algorithm

To minimise the decoding complexijtwe would like to eliminate the multiply operations
requiredby the MAP algorithm. This can be achieved by taking the logarithm (or negative
logarithm)of the algorithm. Again, this technique was first used for the ISI channel [26,27]. It was
later applied to the coding channel in [18,19,25,28,29].

Takingthe negative logarithm, the multiplications in the algorithm are converted to additions.
Adders are much easier to implement than multipliers. Howthesadditions are converted to the

E operand defined below
aEb= —log(e 2+ &b
= min(a,b) — log,(1 + & ~R~D). (21)
The functions mirfa,b) and [a—b| can be easily determined usisgbtraction and multiplexer
circuits. However the function
f(2 = log:(1 + &9
= cln(1 + e %9 (22)
wherec = 1/Ine = log, ewould appear to be too complicated to be implemeifigdre 3 plots

f(2) againstz for c = 1. We can see thd{z) quickly decays to zero arfths a maximum value of



cln2 = 0.69% (for z = 0). Thusf(2) can be easily implemented in a small lookup table. A range

of lookup tables can be implemented to cover various values of

If we let
L, = — 10g:4 (23a)
Al = — log.ay’ (23b)
BY = — log.Ay (23c)
D™ = — log; 6™ (23d)
the MAP algorithm becomes
—1
L = | AP+ Dom+ BIOM - E Al + DL + B[ (24)
1

= E i+ ot &

j=0

1
- E o+ 8y (26)

=0

whereE;_j & = a° E a' E- - - E &~ The branch metrics are

Dik'm = — log, #y — 10g: &} — A + y, '™
= - |098%k — log, g(k) - ilogg(C&/C(k)) - A(in + ykci’m)
= — Ky — (7 + Ax)i — Aychm (27)
whereKy is a constantA = (2/0°)log. e = L, andz, = — log, ¢y is the log—APrPTo perform

renormalisatiorwe letKy be equal to the smallest previous state metrecch think oA as the
no—noise amplitude of our demodulated and quantised signal, e.g., +1 could be equivatent to
7 = 111,. Note that we caarbitrarily varyA andL. to determine and thus the values in a lookup
tablefor (22). Alternatively givenL. and a lookup table for a value @fwe can vanA. We can
re—expres$20) as

L = z + AX + Z (28)

wherez, = — log, &y is the extrinsic information from the log—-MAP decoder

C. The sub—MAP Decoding Algorithm
If we letf(z) = 0, then (24) to (26) becomes

— mi m om fom)\ _ m 1m f(1,m)
L = min (A + DOm 4 BfOr ) min (A + Dim 4 i ) (29)
A = min (AROM 4 DOBOM, AbLM 4 pLoltm) (30)



BI" = min (D™ + B{OM, DM + B{EM) (31)
Thissub—optimal algorithm (whiclwe shall call sub—MAP) has the advantage that it is independent
of o2. Again, this algorithm was first derived for the ISI channel [26,27] and then later applied to
the coding channel [19,30]. It has the same sub—optimal hard decision performanceitesithe V
algorithm[19]. Note that the calculation of the forward state metrics is exactly the same as the state
metric (SM) calculation for the ierbi algorithm However unlike the \terbi algorithm, the SM

alsoneed to be calculated in the reverse direction and the likelihood ratio determined.

ITI. IMPLEMENTING THE LOG—MAP ALGORITHM

As can be seen from (24) to (27), there are four major sections in a log—MAP d&tmber
are the forward state metric calculator (FSMC), reverse state metric calculator (RSMC), log
likelihood ratio calculator (LLRC), and the branch metric calculator (BM@®@).minimise the
decodemate count, it was decided to have a serial implementation. That is, each of sher&M’
computed one a time. This is similar to previous seridatarbi and trellis decoders constructed
by the author [31,32]. Since there &estates, this implied that it would takel@&st2” decoder
clock (CLK) cycles to decode eadlit. Thus the CLK frequency had to be at Iédimes greater
thanthe data clock (DCLK) frequency

To avoid problems with highpeed clocks, it was decided to limit the CLK speed to 10 MHz.
Also, the Xilinx XC3100A [33] series programmaltegic was chosen due to its low cost and

relatively high speed.

A. Branch Metric Calculator
From [34], the BMS are calculated as follows
DI™ = |z, + AxJ( @ u(z + Ax)) + IAYJIC ™ ® uAyy) — K, (32)
wherei @ j is the modulo—2 sum o&indj and ug) is the unit step function. As befoig is equal
to the minimum previous state metric. In t&#a@omplement notation, w) corresponds tohe
logical inverse of the most significant or sign bitvaflt can be shown that
WG S uWw) = —wj + (W + w)/2. (33)
The — wj term in (33) directlycorresponds to the terms in (27) with= z, + Ax andj =i or
w = Ay andj = c"'™ The additional terms are constants dependekibaly and can be absorbed
in Kx. We can see that whenthe BM in (32) is added to its state metric, the resulting value will always
be greater than or equal to zero.
An important consideration is the value of the signal amplifuddne optimum value g can

vary depending on the number of quantisation bitsnd the noise varianeg® [36]. Figure 4

10



illustratesa model of the demodulator for the received signéds defined in (3)). A model of the
branchmetric calculator is also shown (we have assumeditha in this case). Wassume that
X¢ Is multiplied by some unknown fixed positive voltag&@he demodulator has an automatic gain

control (AGC) circuit that efectively normalises the input signal to its mean absolute value, i.e.,

E[IVx] = VE[|2d, — 1 + p,]]

= V(o\/%exp(— #) +1- ZQ(%))

= Vmagp). (34)
Notethat for high SNR (and low) that mag§) = 1. Howeveyfor low SNR (and high) we have
magg) = o/2/n = 0.79&. This is very important when trying to estimate the noise variance.
A variance estimator that assumes roag(1 will work correctly only for high SNR.

For turbo codes where a low SNR is expectednore complicated method is required to

determineV ando. We can see from (34) thaee have two unknowns and one equatiansdlve
for Vando we need another equation which can be obtained by estimating the squareasitiesi

signal,

E|(Vx)?| = VA1 + o). (35)

Figure5 plots magf) andrms() = m. We can see that for low SNR, rro( o. Due to
thecomplexity of (34), there does not seem talsemple direct solution of the two equations. The
estimationof (34) and (35) can performed digitalBy quantising (34) and (35) into say eight bits
each,a 64Kx 8 lookup table can be used to output precompatealues quantised to eight bits
each Alternatively the ratio of the square of (34) with (35) will give a single equation as a function
of 0 [35]. A smaller 256 8 lookup table can then be used to output

The value of A compared to the dynamic range of an analog to digital (A/D) converter can
greatlyeffect the decoded BER [36] (especially when the number of quantisation levels is small).

We shall assume that there &fe— 1 quantisation regions with a central “dead—zone”. That is, a
quantised0” ranges from —0.5 to 0.5. The ¢gst quantised value 2~1 — 1 and ranges from

29-1 — 1 5to infinity. As shown in our demodulator modelRigure 4, we shall assume that the
demodulatorscalesthe input byC before A/D conversion. In [36] computer simulations of the
Viterbi algorithm showed tha&t should be less than one. Also, as the SNR is decreased, the value
of Arelative to the maximum quantised output should decrease as well. From Figure 4 we have that
the“optimum” value ofA is

_ C(29-1 - 1)

A= mage) (36)

11



Analysingthe simulations in [36], we found th@t= 0.65 should give near optimum performance.
However for low o it may be necessary to reduc€and thus?) to keep the lookup tables for the
E operand at a reasonable size.

Forour BMC, it was decided to hage= 6 bit quantisation as a compromise between having
good performance and decoder complexiEach MAP decoder could be programmed for either

ratel/2, 1/3, or 1/4 operation. For rate 1/4 modezrd, this implied that the maximum BM value

isn(29-1 — 1) = 124wheren is the number of coded bits. In turbo decoding madean range
from —128 to +127 which can greatly incredbe maximum BM. Due to the limitation of the
numberof bits to represent each SM, the maximum BM was therefore limited to 127.

OneBM is calculated each CLK cycle with a two CLK cycle pipeline delay (one cycle to
determinethe symbol and another cycle to perform the calculation). The BM is then passed onto
the FSMC and an SRAM for storage. The BMtored in the SRAM are then read out in reverse
order for the RSMC.Since2” BM’s are calculated fdk DCLK cycles, the total storage space
requiredis N2". Although there are only"BM'’s we chose to simply store athakn later retrieve
the previously calculated BM'for the RSMC.

Ideally, for theN = 216 turbo code in [6], the required memory storage is one megabyte (MB).
Thiswas too lage and too expensive to implement, and s@# decided to limit the storage space
to 64K. Forv = 4 this implies thai = 212=4096. A simplistic storage technique is to writerthes
datainto one 64K RAM and read the old data from another 64K RAM. This requires a total of 128K
of RAM. We can halve the amount of RAM by using the circuit shown in Figure 6.

WhenCLK is high, thepreviously stored BM is read out from the RAM and then latched on
thefalling edge of CLK. Simultaneouslg new BM is written into the RAM using the same address
whenCLK goes low Thus, inone clock cycle we perform a read, followed by a write. Since the
RAM address is inverted evelyDCLK cycles, the BMs are read out in reverse ordércontrol
signalto the CEnput of the RAM is used to enable the storage of the news 8i\Mhe correct time.

In our design, two 35 ns 64K4 separate 1/0 SRAM’'were used.

Ourdesign could be programmed from 4 to 512 states, with a corresponding chdhgerin
16,384to 128. Howevetto limit the decoding delay and storagquirements for the turbo decoder
the maximum block size for 4 and 8 states was reduced to 4096.

B. State Metric Calculators

Thearchitecture of the FSMC and RSMC aegy similar A 35 ns 1Kx 8 dual-port RAM is

usedto retrieve old SM and store theew SM5. With eight bit precision, the SMcan range from

12



0to 255. A further increase in precision would have greatly increased the complexity of the.decoder
Thus,it was decided that the S¢vould be represented by eight bits.
At the end of the previous block, the initial S\ire stored into one side of the RAM. For the
FSM’sthe SM for state O is set to zero and the other states sv@56t(the closest value to infinity).
This corresponds to the sequence startingate zero. For the RSW/if the final state is unknown
all the initial SM5s are set to 0, otherwise they are initialised in the same way as the. FSM’
Todetermine the read and write addresses for the &®lheed to examine the implementation

of a rate i systematic encoddBerrou et al. [6] showed that a rate 1/2 systematic encoder can be
implementedusing a shift register as shown in Figure & Mive thatS, = (sg S, S2 ... ,sﬁ‘l)
correspondso the current encoder sta@®, = (gio, gil, giz, - giV) corresponds to the encodede,
andg, g, € {0,3,for0<i <n- 1 Weassumetha = g’ = 1for0 <i < n — lsince

this ensures that the free Hamming distance leaving and entering a state is at least 2
For the forward SM;, we need to determir®d, _,, S) from (25). If we let

b(dy-1,9) = §-1 = (Sﬁ Seo S SE) (37)
then
So= (01 OL O L5 39)
where
v—1
s = > gigmod2. (39)
ji=1

We can see that by reading two SMe can generate two new S\VFigure 8 givea partial trellis
forav = 4 code. Thus, in the next data clock (DCLK) cycle pheviously stored SN’are read
outone at a time using the following forward read address (ignoring the sulb¥cript
R = (sl, .., so). (40)

A serial to parallel operation is performed and the twosSi¢ stored in eegisterfor two CLK
cycles.In the first CLK cycle, BMO is added to the first SM and BM1 is added to the second SM
to form the first new SM. In the next CLK cycle, the Bi\iire reversed to form the second new SM.
After a delay from reading and calculating the new ${dtual to five CLK cycles) the new S’
arewritten into the dual-port RAM with the following address (ignoring the subddgript

W; = (so ®s,sh . ,sv‘l). (41)

From (26), we need to determiriéd,, S) for the reverse direction. If we let

f(deS) = Serr = (DL O sS85 (42)
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then

S = (shs .5 L) (43)

Thus, in a similar way to the FSMC the read and write addresses for the RSMC are
R = (so @s,sth .. ,sv‘l). (44)
W, = (sl, 2 .., L so). (45)

Sincethere is a delay in calculating the new SMie cart use the read/writeechnique as used
for storing the BMS. With a 1Kx 8 DP—RAM this implied the maximumumber of states is 512
(halfthe memory size). The minimum number of states is 4 due tegtrestion thagi0 =g/ =1

Sincethe forward SMs are used in the LLRC they also need to be stored and read out in reverse
order.A circuit very similar to the BM storage circuit is used to perform this task. The old forward
SM's that are read from the DP—RAM are the values that are stored in two 88RAM'’s.

An important part of the SM calculator is the implementation of the adders and the E operand.
Figure9 illustrates how the BM'are added to the S8A(similar to that in [37]). Wsee that the
previousminimum SM is subtracted frothe BM’s before being added to the SMThe output of
the BM subtraction circuit has a tweotomplement outpiftve limit the output so that the range is
from —128 to 127). The BN’ are then added to the SMjust as in the Nerbi algorithm). If the
BM is positive, the SM limiting circuit is enabled. Howeviethe BM is negative, the limiting
circuitis disabled to allow normal addition to occsince the BM can never be more negative than
the smallest SM, the resulting SM will always be positive.

Figurel0 illustrates the Bperand circuit. As shown in (21) we need to find the minimum of
thetwo path metrics (PM) as well as the absolutietbhce. The carry—out afsubtraction circuit
(with carry—inset to 0) is used to select the smallest path metric. This carry out is also used to invert
the output of another subtraction circuit to give the absoluferdifice. When PRiis greater than
PM! the output of the subtractor will give the correct positive output when the carry—in is equal to
1.Howeverif PMOis less than or equal to Bithen the output will be negative. Normaile would
haveto invert theoutput and then add 1. Howeyéy setting the carry—in to 0, we avoid the
additionaladder circuit. This is why the carry—out of the first subtractor goes into the carry—in of
the second subtractor

A circuit that uses a comparatawo multiplexers, and subtractor can also be used to
implementthe minimum and absolute flifence functions [29]. In XC3100A logic this would

require at least 20 configurable logic blocks (CLB) to implement using eighariimetic,
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comparedto 16 CLB5s for our design (since the XNQ&Rtan be absorbed into the second
comparator).

In order to keep the SKI'positive, we addIn(2) to (21). Thusif the absolute dierence is
equalto zero, we add zero to the minimum, otherwise we add some small valdeteisined

previously,the maximum value d{2) is cIn(2). For a ratel/7 codeE,/Ng = —0.5 dB, and six bit
quantisationwe haveo? =3.93 and using (36A = 11.3 (which we round to 1). Thus

¢ = 0%A/2 = 21.6 and the maximum valuef¢d) is 14.99 (15 after rounding). Thus only four bits
arerequired to represef(z).
The smallest non—zero valuef(d) that results in O after quantisation is 0.5. Solving(@r
= 0.5 we have
z = — cln(exp(0.5c) — 1). (46)

Forthe aboveconditions we have= 81.2. Sincd(z) monotonically decreases withall values of
f(2) for z = 81.2will be less than 0.5 and so will be quantised to 0. Therefore, by limiting values
above 81 (the quantised value of 81.2) fromahsolutedifference circuit to 81, we only require
an81x 4 lookup table to implemeffz). In our design, we limited the maximum address space to
63 in order to reduce the design complexitiis implied from (46) that the Igest value ot is
17.835givingz=63.5). Thus, if the optimum valoéA causes to be more than 17.835, we reduce
Ato give us the maximum For the above example this wouldAe 9.08 (or 9 after rounding).
Figure 10 shows how the absoluteeli&nce output is limited to six bits and used to address
a 64x 4 lookup table to determirf¢z) + cIn(2). The table look—up output is thewlded to the
minimum circuit output. The adder output is limited to eight bits as shown. Just astera V
decoder|imiting the outputs of the adders will cause some degradation in performance. However
sinceit is the lager and thus less likely path metrics that are limited, this degradation will be very

small.

C. Log-Likelihood Ratio Calculator

For the computation oﬂL (EMY) we add the reverse path metric for btRPM) to the

correspondindorward SM that is read from the SRAM. This is shown in Figlird he summation
givesa nine bit result which is not limited. A most significant sign bit is also added due téettte ef
of f(2) (in this case we cannot addn(2) because we are E summing more than one term). The
registeris initialised to its maximumalue (+51) to start the E summation (or “Eccumulation”).
We could have used a multiplexer to initialise the E&bister to the first summation. Howeyer

to reduce complexity a simple limiting circuit was used. Since on the first E summatibns+51
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usuallymuch greater the firshetric, the ENMregister would be correctly initialised most of the
time.

Wethen find the minimum and absolutefdience between the current register output and the
currentmetric (the summation of RPMnd SM). V& then perform the standard look-aperation,
in this case subtracting the look—up restdm the minimum. @ decrease the delay between the
registeroutput to its input, we also register the outputs of the abs—min circuit. This éerteeirhsert
amultiplexer after the first adder (the other input was thé @&Mput) to allow the correct ENb
be calculated due to pipeline delay

After the EM’s have been finally calculated (which dome in parallel), we subtract Eftom
EMO and limit the output to +127 or —128 if necessary to give an eight bit result. An additional three
clock cycles are required to perform the final calculation. Since the LLR are calculated with the
reverseéSM’s, the LLRS are produced in reverse ordénus, for a normal MAP decoder the output

needso be reversed in time in blocks Mdf

D. Decoder Performance

Sinceup to two clock cycles are required for the decoder to start, two for the BMC, five for
theSMC's, and three for the LLRC, a total ®f + 12 clockcycles are required. All the logic was
implementedn XC3100A-5 gatarrays which allowed a clock speed.of 10 MHz. The SRAMS
were35ns in speed. Also, bits were used to terminate the trellis which slightly reduces the speed
of the decodefThe decoder speed is given by

12 _
2<122(2—+>1fz) 2<v=4
fq = (216-v — )f, : (47)

5=sv=<9
21672 + 12) !

The slowest decoder speed is for 9 at 17.7 kbit/s and the fastest decoder speed is$d at
624.7kbit/s. Fory = 4 the speed is 356.8 kbit/s.

The SMC’s and LLRC were implemented in one XC3190A-5 (7500 gate equivalent). The
BMC was implemented in one XC3142A-5 (3700 gate equivalent) while two XC3130@&790
gateequivalent) were used to implement the control lagid address generation (as well as some
additionalfunctions for the turbo decoder). The encoder was implemestadg an XC3142A-5.
Both the encoder and decoder can be programmed with any codgi‘\/\ﬁifthgi” = 1 through a
seriesof DIP switches.

To test the decoder performanc&V/&N noise was generated on a PC using a C++ program.

The parallel port orthe back of the PC was used to transmit eight bit quantised noise samples to
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thedecoderAn adder circuit in the encoder Xilinx chip adds the ntosthe encoded signal. The
addercircuit produces a 6 bit quantised resuth a dead zone and 63 quantisation regioasous
noisegeneratorsvere used, starting with one that had a period ok8@ for the MAP decoder
tests2.1x 10° for the rate 1/3 turbo decoder tests, anck2L8'8for the rate 1/7 turbo decoder tests.
This last decoder usettie “standard” Lehmer uniform random number generator with multiplier
16807and modulus ¥-1 [38] together with the Box—Muller algorithm from [39, pp. 216-227]
generate2?3 eight bit quantised random numbers which are stored in RAM (after inpattng
0). The dual 32 bit seed uniform random number generator from [40] was then used to randomly
select the numbers from RAM and send them to the encoder

Figurel2 gives the performance of a rate 1/4, 512 state systematiwitbdede polynomials
0o =1753g1 =1547,go = 1345, andjz = 1151 taken from [41]. The performance of the hardware
log—MAP decoder is plotted, along with the performance of the hardware sub—MAP decdder
asoftware block Werbi decoderThe signal amplitud& was fixed to 7 to avoitimiting the SMs
too much. This is less than the “optimum” values for six bit quantisation, but with only eight bit
state metrics, SM limiting becomes more of a fact&t low BER, we can see that the
implementatiorioss is only 0.05 dB. Note that at low BER the ideal performance oftérd\and
MAP algorithms are almost identical which allows us to make a comparison. ABRthe MAP
decodemains about 0.5 dB over ideait&fbi.

Also plotted on the grapis the sub—MAP decoder performance. This is where the E operand
is simplified to the min function. This was done by setting the lookup tabtee iIMAP decoder
to zero. The signal amplitude was also set to A = 7. As can beadew BER the sub—MAP
performances almost identical to the MAP decodétowever the sub—MAP decoder always
performedworse than ideal Xérbi, losing about 0.3 dB at high BER.

Figurel3 shows the performance for a systematick&tel6 state code with polynomials
=37 andg; = 21 from [6]. Since the rate loss from the tail bits is very smaltouéd compare our
decoderresults with a software MAP decoder from [42]. The hardware MAP decoder closely
follows the computer simulation at high BER, losing 0.08 dBw&tBER. The sub—MAP decoder
losesabout 0.5 dB at high BER and closely follows the MAP decoder at low BER.

IV. TURBO CODING AND DECODING
The basic turbo encoder consists of two or more parallel concatenated systematic
convolutionalencoders separatdsy an interleaver of siz®. Figure 14 shows the general
implementatiorof a rate 1/3 turbo encodigom two constituent rate 1/2 encoders. The two coded

outputscan be punctured in order to obtain higher rates. The INT block is the interleaver and the
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DEL block is a delay circuit with delay equal to the MAP decoder delaje DEL circuit is
requiredsince the decoder for the interleaved data has to wait for the first decoder to output its data.
Thus,the received data has to be appropriately delayed. Instead of the decoder delaying the received
interleaveddata, this delay is performed within the encodenplifying the decoder operation.
Figurel5 illustrates the basic decoding block in an iterative turbo dedodee first iteration

we do not need to add the APrP trto Ax,. Since botltk = 0 or 1 are equally like]yve havdahat
zﬁ =0 (asuperscript of 2 is used here as explained later) is ad&@d\ide then decode the symbols
from the first encoderThe output from the first MAP decoder j§1 = A + zjl where the

superscriptsndicates which MAP decoder was used, padk — Dy whereDy is the delay of the
MAP decoderThis data is then interleaved to match the interleaved syrfriooisthe second

encoder.
Theij + zjlfrom the first MAP decoder is then fed into the second MAP dedodéis case
we have let the extrinsic information from the first MAP decoder become the APrP for the second

MAP decoderOne can think of the first MAP decoder improving the SNR$ewhich efectively

resultsin a lower BER foﬁk. The purpose of the interleaver is to randomise the “burst” errors that
arecharacteristic of MAP andi¥rbi decoders. The Iger the interleaver the more randomised are
the bursts of errors.

With an improvedAx;, the second MAP decoder is able to correct even more errors. Its output

M=Z 4+ A+ Z (48)
wherez? is the extrinsic information from the secoé\P decoder and the subscrip used to
indicatethe interleaved and delayed time index Subtractzl + Ax from A2 to obtainz? which

is then deinterleaved and passed onto another iteratizﬁlgs(wherezl is the total delay of the

iteration).Just like in the second MAP decodihis extrinsic information becomes the APrP for

thefirst MAP decoder in the next iteration. The deinterleaver serves to randbmiserst errors
from the second MAP decodétote that if we included! with z2, the deinterleaver would produce
adelayedzjl with “bursty” errors. Thus, feeding these bursty errors into the first MAP decoder will

resultin very poor performance from the decoder

In the next iteration the first MAP decoder output is

A =2Z+ A+ Z (49)
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In this case we subtrazﬁ from ijl to give the desiredx + zj1 which is then fednto the second

MAP decoder as before. Again, wien't want to includezj2 since after interleaving it would be
burstyagain.

Obviously,in the first stage of decoding we wambbtain the lowest BER possible. However
at low SNR’'s a codes performance may perform opposite to what is expected. An important
observations that the more powerful a code is at low B&Reworseit performs at low SNR and
highBER’s [42]. Thus, we dohivant to choose too complex a code as iterative decoding will give
poorperformance-Howeverwe also dort'want to choose too weak a code (in terms of performance
atlow BER)as latter stages of decoding will not be powerful enough to correct any further errors.
This was first noticed in [6\vhere a 16 state code was found to be optimal for a rate 1/2 turbo

decoder.

A. Decoder Implementation
The additional circuits required for a turbo decoder are the delayzsr2 fand Ax + Z, the

interleaversind deinterleavers, the delay fox,, Ayﬁ, . Ayﬂ‘l, an adder and two subtractors. For
thelast stage of decoding the deinterleaver can be ustglriterleave the second MAP decoder
outputwith the addition of a multiplexeWith a rate 1/4 MAP decodea rate 1/7 turbo decoder
couldbe constructed.dlreduce the number of inputs, the data was received seoiadysymbol
atatime. Thus, BPSK modulation could be directly used, although with some modifications QPSK
couldalso be used.

EachMAP decoder has a maximum delay of 4096 bits and as showrekthrinterleaver has
a maximum delay of 65,53®its. Thus, the total delay for the seven symbols ¥s2%
(4096+65,536)F 974,848. Thus, six 1M1 SRAM’s were used to delay the received data. The
MAP decoder was initially designed to have a 16K block size, and thus a 16Kfdelay 2). With

this extra delaysix 256Kx 1 SRAM’s were included in the desigout are no longer necessary
Also, two 16Kx 4 separate I/O SRAM'were usetbr each of thaj2 andAx; + zi1 delays, although
two 4K x4 SRAM’s would be sdicient.

Sincethe interleaver and deinterleaver architecture are sjnlarwill only discuss the
implementatiorof the interleaverFor the interleaver we have used the same readteci@ique
asused by thelelay and reversing circuits elsewhere in the design (thus giving a delay equal to the
interleaverblock size). The maximum interleaver size is the same as in [6Ni=.64K. Thus,
only two 64Kx 4 separate 1/0 SRAM’are required to implement the interleavéowever the

interleaveraddress generating circuit is a little more complex and is shown in Figure 16. At startup
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the SEL line goes high and the counter output is stored into the SRAM. The SRAM otukymut is
readout and latched by the D—F4>’Using this address the data is sequentially stored into the
interleaverSRAM. At the same time SEL goes low and the interleaver address is read from the
EPROMand storedhto the SRAM, to be read out in the next interleaver block. The process repeats,
interleavingthe previous set of addresses.

Notethat only one interleaver address generator (IAG) is implemented. Thus, only ohe set
EPROM’'sneeds to be programmed with any interleaver that is desired. The time reversal of the
MAP decoder output can also be incorporated into the interleaver EPROM reducing the delay and
complexity of the decoderDue to the two MAP decoder delays (equaBKj, the interleaver
addressebetween eactieration also has to be delayede WWsed two 8k« 8 SRAM's to perform
thistask. Since 8k 8 SRAM’s have common I/O, the circuit in Figure 17 was used to separate the
I/O and allow the read/writeechnique to be used.

A disadvantage of the above scheme is that if an error occurs in the address genenator
propagatioroccursand the decoder would have to be reset. Howavéne many days of testing
we performed on our codec, the decoder never had to be reset due to the interleaver failing or any
otherpart of the decoder failing.

The first encoder sequence starts and ends in statetlzenogh the use of a-bit tail.
Interleavingis performed on all the information and tail bits. Beeond encoder sequence is also
madeto start in state zerdlowever to keep the same decoder architecture for the second MAP
decodertheN bits are not forced to end in state zero. This implies that the final state is unknown.
Thesecond MAP decoder takes this into account by initialising all the reverse state metrics to zero.

Figure18 shows a photograph of the encoder and $A® the left hand side are seven DIP
switchesused to program the code polynomials for both the encoder and detioebottom
Xilinx chip performs the encoder function. The middle Xilinx chip is the address counter and
multiplexerfor the IAG.

Figure 19 shows a decoder iteration. The first decoder prototygee implemented using
speedwirewhich allowed any design corrections lie easily made. This prototype was then
implementedon a printed circuit board. From the top, the Xilinx chaps the control logic and
addresgeneratgMAP decoder 1, MAP decoder 2, data delay address generator and miscellaneous
logic (left), and branch metric calculator (right). Thegachips to the left and right of the Xilinx
chipsare the 1kx 8 dual-port SRAMs used to store the neamd old state metrics (SM). The left
chipsstore the reverse SMand the right chips store the forward SMD the left of the control

logic chip are the 64K 4 SRAM’s where we store the branch metrics to be used in calcullaging
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reverseéSM’s. The four 64kx 4 SRAM’s to the right of the control logic chip are used to store the
forward SM’s to be used in calculating the log—likelihood ratio. Between the bottorXiting
chipsare the 16k« 4 SRAM’s for delaying the input and producing the extrinsic information. The
12 SRAMS' at the bottom left of the board are for delayingitBebit inputs (six 256k 1 and six
1IMx1 SRAM’s). The four 64kk4 SRAM’s atthe bottom right hand corner perform the
deinterleavingand interleaving of the data.

Figure20 is a photograph of the completed codec. A 6U high 48 cm rack is used which contains
from left toright, the encoder/interface card, turbo/MAP decoder card 1, interleaver address delay
cardl, turbo/MAP decoder car@sto 5, interleaver address delay card 2, and turbo/MAP decoder
cards6 and 7. An additionalllturbo/MAP decoder cards can fit withime rack to give a total of
18 iterations. Tirbo/MAP decoder 7 has its switches in the up position, indicating the decoder is
setup for seven iterations. Each iteration can also output the first decoder output, using4 16K
SRAM from the second MAP decoder to reverse the data in time.

Note that our current decoder implementation is not able to automatically synchronise to a
received signal. Instead, a signal from the encoder was used to synchronise the Baturéer

modificationsmayinclude a synchronisation word in the encoded block to allow synchronisation.

B. Turbo Decoder Performance

Thefirst tests were made usiagate 1/3 turbo code using identical rate 1/2 16 state codes with
polynomialsgy = 31 andy, = 33 (inoctal) [43]. These code polynomials were optimised for rate
1/3 turbo codes and were found to perform better than the codes from [6] (which were optimised
for arate 1/2 turbo code). The valuefofvas set to 15 for alf,/Ny, which is close to the optimum
values.An S = 31 [44], 65,536 bit interleaver was used (S = 31 implies that any two consecutive
bitsare separated by at least 31 otherdfter interleaving). The actual rate is reduced by 4092/4096
=1023/1024 due to the MAP block size being only 4096 bits, with 4 bits used as the tail. The “inner”
codeis terminated to state O while the “outer” code is not terminated. Shannon capacityad¢ this
is at anEy/Ng = —0.55 dB (the capacity at this rate with QPSK modulation is —0.49 dB).

In Figure 21 we plot BER versilis/Ny for 6.5 and7 iterations (a half iteration is the output
of the first MAP decoder). ¥ see that 1@ and 105 is achieved at 0.32 d&nd 0.38 dB,
respectivelyThis is 0.87 dB and 0.93 dB away from rate 1/3 capacity for 8BRL0™ and 165,
respectivelyUnfortunately 10-7is close to af,/Ng of 1.0 dB due to the BER flattening abdué
dB. We also see thatbove 0.4 dB, the BER from 6.5 iterations performs better than 7 iterations.
This may be dudo the second MAP decoder being unterminated or perhap$ean @ff other

non-linearitiesn the decoder
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Also note how the performance shallows between 0.35 and 0.4 dB. There appears to be a
suddenchange in slope. As can be seen, it is not an error floor since the BER does decrease with
increasinds,/Ny. The reason for this sudden change in slope is duegoidléfree distance of turbo
coded46]. This free distance has a spectral component much less than one which greatly reduces
its error probability (in fact this reduction is inverselpportional td\; [46]). However since the
freedistance term has a shallow slope, this slope will appear at relativeligjiigh

Computersimulations for this scheme have not bpegviously performed. Thus, we make
a comparison to the rate 1/3, 16 state, Bine 16,384 scheme in [45]. M 11 iterations they
achievedanEy/Ng of 0.24 dB at a BER of 18. This is 0.08 dB better than our scheme which has
7 iterations and an interleaver that is four timegdar

Thefirst MAP decoder had mostlyouble bit error outputs at low BER. This is predicted in
[46] where the use of systematic convolutional codes leads to error sequfenfoesnation weight
two (corresponding to the errbit causing the sequence to leave the path and the error bit causing
the sequence to return to the path). This is very important for turbo codes since it greatly increases
its performance over the use of nhon—-systenmatimoders (which have single information bit error
patterns)46]. Also, systematic encodeperform slightly better over non—systematic encoder at
low SNR [42] which is important in iterative decoding.

The output from the second MAP decoder at low BERas mostly in single bit errors,
indicatingthat the unterminated states could be causing a problem. Since thérdlaré6 MAP
blocksin each interleaver block, thdeft of all these unterminated states could induce these single
bit errors.

It was found that if the subtractor outputs in Figure 15 were limited to have a range from —128
to +127, the decoder would perform very pooWhen the extrinsilmformation is added to the
received noisy sample (which ranges from —-31 to +31) errors could be introduced due to
non-linearitiedn the design. For example, say we receive +31 and add the extrinsic information
+127to it. The output othe first MAP decoder will be limited to +127. When we subtract the
extrinsic informationthe information fed into the second MAP decoder will then be zero! The
resultsshown in Figure 15 had the subtractor outputs limited from —64 to +63 to avoid this problem.

In Figure 22 we plot BER against the number of iteration&dftyy = 0.0, 0.1, 0.2, 0.3, 0.4,
0.5,and 1.0 dB. Of interest is how the BER suddenly flattens after quickly decreasing for 0.4, 0.5,
and1.0 dB. Another point of interest is the potential of more iterations. The 0.2 dB curve indicates

thatfurther improvement ipossible and the 0.1 dB curve might be able to reach lowdRvell.
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Figure23 shows the performance of our rate 1/7 16 state turbo decoder with code polynomials
O = 23,01 = 35, = 27, andgg = 37 from [45]. D obtain better performance, the extrinsic
informationsubtractor outputs were limited from —96 to +95. The valuewés set to 7 to avoid
limiting the state metrics too greatlhe 64K interleaver from [24] was tried, but was found to give
inferior performance to our randomgenerated interleaver (although it must be noted that this
interleaverwas designed for a rate 1/2 turbo code).

An Ey/Ng of —0.30, —0.27, and —0.19 dB is achieved for BE&F 10>, 106 and 167,
respectivelyNote thathe 167 BER is achieved with 6.5 iterations. Shannon capacity at this rate
isat —1.12 dB, from which we are 0.82 dB away at a BER Ot With more iterations, we expect
to reduce this gap by 0.1 to 0.2 dB.

V. CONTINUOUS DECODING AND SYNCHRONISATION
A way of improving the decoding design is to use a continuous MAP deéodentinuous
decodedoes not need atail to be added to the sequence and only needs to synchronisedethe
symbols.We will give a description of aefficient implementation of a continuous MAP decoder

alongwith a synchronisation technique that can be used for a turbo decoder

A. Continuous Decoding

A continuous decoding algorithm for the MAP algorithm was first presented for the ISI
channelin [47] (with a complexity exponentially proportional to the decoder delay). A simpler
algorithmfor continuous decodingf convolutional codes was first described in [48] and later in
[29,49,50].A similar algorithm for the ISI channel is given in [51]. Tineeceived data symbols
(R¢) are stored from timketok + L — 1. They are then read out in reverse order fromHkime —

1tokandp}), ; determined recursively (starting wilf, | = 1for allm). The forward SMs a!
arealso calculated as normal using Bxghat have been delayed by. 2Jsingay|, 6:(’”1, andpy, ;.

Ay is determined as normal.éthen incremertby one and repeat the whole algorithm. By making
L suficiently large, thegy, , that is determined will be very close to thee 87, ; hadgy, | been
known precisely We can see that this algorithm is computationally intensive since fgadh
calculated. times instead of only once.

A computationally simpler algorithm was first mentioned1i@] and later in more detail in
[52-54]. As for theprevious algorithm we stof& into a RAM of sizenL. The reverse SM'are
thencalculated (starting witi", | = 1 for all m). Howevey the reverse SN’ continue to be
calculatedrom timek tok — L + 1 using thdy, from the reversing RAM. After thg have been

delayedby 2. (using another RAM of sizen2) the forward SMs are calculated and stored in a
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RAM of size2'L. The time reversed forward S§are combinedith the last reverse SM to
givea time reversed LLR output.@\¢an see that only half the reverse St are calculated are
used.Thus, two reverse SM calculators are used in pipeline.

Figure24 shows how, is stored and read for use by the reverse SM@'this case we have
assumed thdt = 64. The first RAM is used to time revef&en blocks ofL and the second RAM
is used to delay the reversBdby .. Two multiplexers are then used to alternatively select the
RAM outputs for use by the two RSMLC’

Using the read/write technique, the total amount of RAM that is required is
5L X nq+ L2” x 8 where we have assumed eight bit Skihd LLR. An additiona?2” x 8 bits
would be required if the output had to be reversed in time. This is still considerably less complex
thanhavingL RSMC'’s as in the previous algorithm. If the decoder is to be used in a turbo decoder
this reversal can be performed within the interlealieetotaldelay is 4 (with the LLR reverser)
or 3L (without the LLR reverser).

B. A Synchonisation Echnique for Wirbo Decoders

In a turbo decoder an important consideration is being able to synchimtheeinterleaved
dataof depthN;. One could insert synchronisation words, but thigeases complexity and
decreasethe bandwidth diciency. The first MAP decoder needs to only synchronisegossible
states.This can be donby monitoring the average amplitudel@f When the decoder is out of
synchronisationthe average value dfi] will be lower tharexpected. This is due to the decoder
notreceiving a valid code sequence and producing an unreliable decoded sequence.

By accumulatinglk| for a certain length of time and comparing it to a threshold, the decoder
canmake a reliable decision as to whethas synchronised. If the decoder is not synchronised,
it tries the next state and then waits a decoder delay (in order for the decoder to produtatajable
beforeit starts monitoringLk| again. This process continues until synchronisation is achieved.

The average synchronisation tintg lepends on thdecoder delayt{), the time to average
|Lk| (ta), and the number of synchronisation states Since we camandomly start in any state
(takingon averagéns — 1)/2 attempts before synchronisation is achieved) we have that

ts = (ty + ta)(ns — 1)/2. (50)
Theworst case synchronisation time is only twice the average synchronisation time. For a turbo
decodemve have
ts = (ty + ta)(n — 1)/2 + (N; + t4 + ta)(N; — 1)/2. (51)
Thefirst part of (51) corresponds to the first MAP decoder and the second part to the second MAP

decoderFor lageN, the synchronisation time will be dominated by the second MAP decoder

24



Forexample, ity = 3L = 192,t; = 64,n = 2, and\, = 65,536 themy, = 2,155,839,488 bits! At
2.048Mbit/s is would thus take on average about 17.5 minutes to synchronise. Once synchronised,
oneshould increasg so that the synchronisation circuit does not indicate a false alarm with very
high probability

A way ofreducing the overall synchronisation time is to evenly distribute the synchronisation
time between the two decoderseWbuld do this by adding modulo—2 a random birsaguence
of lengthL to the parity of the first individual code. This forces the irdemroder to synchronise
to nL; states.

We also have thdtiL, = N (to keep the overall number of synchronisation states the same).
The outer decoder now needs only to synchronide tstates. The average synchronisatiore
is then

ts = (ty + ta)(nLy — 1)/2 + (N; + t4 + ta)(L, — 1)/2. (52)
Onecan then try various values bf andL, to minimise (52). Assuming a real valueg the
optimumvalue ofL; is (taking the dferential of (52) and setting to zero)

Ni(N; + t, +t
L= \/ I(nl(td +dta) 2 (3)

For our example we thus hate = 2901.96 andl, = 22.58. Sincé, andL, must be integers we
letLq = 2849, = 23 and\, = 65,527 = ¥6— 9. From (52) wdavets = 1,452,829 bits, a nearly
1500times reduction compared to the original scheme. At 2.048 Mbit/s, this correspards to

averagesynchronisation time of 0.709 seconds.

Alternatively,we could let.1 = 4096 and., = 16 which only slightly increasésto 1,541,888
bits (a delay of 0.753 seconds at 2.048 Mbitlg)= 2048 and., = 32 is only maginally slower
at 1,543,936 bits or 0.754 seconds.

VI. CONCLUSIONS

The original turbocoding paper by Berrou et al. [6] presented a coding scheme that came
within 0.7 dB of Shannon capacityhe MAP decodinglgorithm that was presented was much too
complicatedtio implement practicallpWe have re—derived the MAP algorithm to present it in as
simpleform as possible. By taking the logaritimfithe MAP algorithm a realisable implementation
couldbe achieved at high data rates.

The turbo decoder that we have constructed has indeed been able to verify the amazing
performancepresentedn [6]. We were able to come within 0.8 dB of capacity with only seven
iterations.With up to 18 iterations we can expect to reduce this amount by 0.1dB OThus, we

havebeenable to demonstrate that near—Shannon performance can be achieved at high data rates.
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We used a block type MAP algorithm which requires a lot of memory for its implementation.
An efficientimplementation of a continuous decoder has been presented. Continuous decoders have
theadvantage of being less complex, easier to synchronise, a much smallardetegve slightly
betterperformance.

A synchronisation technique for turbo decoders which takes advantage of the low delay of
continuousdecoders has also been presented. It is shown that eveng®intarleaver sizes,

automaticsynchronisation can be achieved in a relatively small time interval.
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GLOSSARY OF ABBREVIATIONS
ACS Add—-Compare—Select
AGC AutomaticGain Control
APoP A Posteriori Probability
APrP A Priori Probability
AWGN  Additive White Gaussian Noise
BER Bit Error Ratio

BM Branch Metric

BMC Branch Metric Calculator
BPSK Binary Phase Shift Keying
CE Clock Enable

CLB Configurable Logic Block
CLK Clock

CP Clock Input

CTL Control

D-FF Data Flip Flop
DCLK Data Clock

DEC Decoder

DEINT  Deinterleaver

DEL Delay

DIP Dual Inline Package

DP-RAM Dual Port Random Access Memory

EM Eccumalator Metric

ENC Encoder

EPROM Erasable Programmable Read Only Memory
FSM Forward State Metric
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FSMC
/O
IAG
INT
IS
LLR
LLRC
MA
MAP
MB
MUX
OE
PC
PM
QPSK
RAM
RS
RSM
RSMC
SEL
SISO
SM
SMC
SNR
SRAM
SOVA
WE
XNOR

Forward State Metric Calculator
Input/Output

Interleaver Address Generator
Interleaver

Intersymbol Interference

Log Likelihood Ratio

Log Likelihood Ratio Calculator
Multiply—Add

Maximum a Posteriori
Megabyte

Multiplexer

Output Enable

Personal Computer

Path Metric

Quadrature Phase Shift Keying
Random Access Memory

Reed Solomon

Reverse State Metric

Reverse State Metric Calculator
Select

Soft-In Soft—Out

State Metric

State Metric Calculator

Signal to Noise Ratio

Static Random Access Memory
Soft Output erbi Algorithm
Write Enable

Exclusive Negative OR
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AGC Model A/D Model Branch Metric Model

Figure 4: Demodulator and Branch Metric Model
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Figure 19: Tirbo decoder iteration.

Figure 20: Tirbo codec.
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