
112 December 2018 (Version 1.05)

Small World Communications
PCD04D4 DVB–RCS2

Turbo Decoder

12 December 2018 (Version 1.05) Product Specification

PCD04D4 Features
Turbo Decoder
� 16 state DVB–RCS2 compatible
� Rate 1/2 or 1/3
� 40 to 4800 bit interleaver
� Up to 192 MHz internal clock
� Up to 136 Mbit/s with 5 decoder iterations
� 6–bit signed magnitude input data
� 4 parallel MAP decoders
� Optional log–MAP or max–log–MAP constitu-

ent decoder algorithms
� Up to 32 iterations in 1/2 iteration steps
� Optional power efficient early stopping
� Optional extrinsic information scaling and limit-

ing
� Estimated channel error output
� Free simulation software

� Available as EDIF core and VHDL simulation
core for Xilinx Virtex–II, Spartan–3, Virtex–4,
Virtex–5, Virtex–6, Spartan–6 and 7–Series
FPGAs under SignOnce IP License. Actel, Al-
tera and Lattice FPGA VHDL cores available on
request.

� Available as VHDL core for ASICs

Introduction
The PCD04D4 is a compatible DVB–RCS2 [1]

error control decoder. DVB–RCS2 uses a 16 state
rate 2/4 duo–binary tail–biting turbo code with an
almost regular permutation (ARP) interleaver.

For DVB–RCS2, there are 24 interleaver sizes
ranging from 112 to 4792 bits. Five parameters P,
Q0, Q1, Q2, and Q3 are used by the interleaver.
The decoder uses a simplified version of the inter-
leaver with four parameters.

For DVB–RCS2 a code rate of 1/3 is specified.
This code is punctured to obtain lower rates. The
code uses a 16 state rate 2/4 systematic recursive
convolutional tail–biting constituent code. Since a
tail–biting code is used, there are no tail bits, in-
creasing the bandwidth efficiency of the code.

Four MAP04D MAP decoder cores are used
with the PCD04D4 core to iteratively decode the
DVB–RCS2 turbo code. The log–MAP algorithm
for maximum performance or the max–log–MAP
algorithm for minimum complexity and highest

CLK

Figure 1: PCD04D4 schematic symbol.

K[12:3]

MODE[1:0]

XDR

DEC_END

XDA[9:0]

RR

START

RST

SLD
C[3:0]
SCLZ[5:0]
LIMZ[7:0]
ZTH[7:0]
M[1:0]
NI[5:0]

NA[5:0]

XD[7:0]

RA[9:0]
R1I[23:0]
R2I[23:0]

ERR[7:0]
R3I[23:0]

P0I[6:1]
P1I[11:2]

R0I[23:0]
XDE

LXD[15:0]
R4I[23:0]
R5I[23:0]

KS[5:0]

P2I[11:2]
P3I[11:2]

speed can be selected. The extrinsic information
can be optionally scaled and limited with each half
iteration, improving performance with max–log–
MAP decoding.

The reverse sliding block algorithm is used
with sliding block lengths of L = 32 or 64. To reduce
MAP decoder delay by approximately one half,
the data is input and output in reversed blocks of
L for K/8 > L, where K is the data length in bits.
Six–bit quantisation is used for maximum per-
formance.

The turbo decoder can achieve up to 136
Mbit/s with 5 iterations and max–log–MAP decod-
ing using a 192 MHz internal clock (K = 4792).
Log–MAP decoding decreases speed by about
30%. Optional early stopping allows the decoder
to greatly reduce power consumption with little
degradation in performance.

PCD04D4Small World Communications

212 December 2018 (Version 1.05)

Figure 1 shows the schematic symbol for the
PCD04D4 decoder. The EDIF core can be used
with Xilinx Integrated Software Environment (ISE)
or Vivado software to implement the core in Xilinx
FPGA’s. A VHDL simulation core is also provided.
For other FPGA families and VHDL ASIC
licenses, a VHDL core is provided.

Table 1 shows the resources used for various
Virtex–4 and Virtex–5 devices. Resources for Vir-
tex–II and Spartan–3 devices are similar to that for
Virtex–4. Resources for Virtex–6, Spartan–6 and
7–Series devices are similar to that for Virtex–5.
The MODE[1:0] inputs can be used to select vari-
ous decoder implementations. The input/output
memory is not included. Only one global clock is
used. No other resources are used.

Table 1: Resources used.

Configuration Virtex–4
LUTs

Virtex–5
LUTs

Block
RAMS

Max–log–MAP 42,068 34,226 16
Log–MAP 58,293 49,277 16

Table 2 shows the performance achieved with
various Xilinx parts. Tcp is the minimum clock pe-
riod over recommended operating conditions.
These performance figures may change due to
device utilisation and configuration.

Signal Descriptions
C MAP Decoder Constant (0–11)
CLK System Clock
DEC_END Decode End Signal
ERR Estimated Error
P0I–P3I Interleaver parameters (used when

KS = 0).
P0I[6:1] = P div 2
P1I[11:2] = Q1
P2I[11:2] = (Q0P + Q2) mod K/8
P3I[11:2] = (Q0P + Q3) mod K/8

K Data Length (K = 40–4800)
K[12:3] = K/8

KS KS Data Length Select
0 = select K, P0I–P3I
1,3* = length 304 (38 bytes)
2* = length 112 (14 bytes)
4* = length 472 (59 bytes)
5* = length 680 (85 bytes)
6 = length 768 (96 bytes)
7 = length 864 (108 bytes)
8* = length 920 (115 bytes)
9* = length 1040 (130 bytes)
10 = length 1152 (144 bytes)
11* = length 1400 (175 bytes)

Table 2: Performance of Xilinx parts.

Xilinx Part Tcp (ns) f
(MHz)

fd
(Mbit/s)

XC4VLX60–10 10.954 91.2 64.8

XC4VLX60–11 9.343 107.0 75.9

XC4VLX60–12 8.299 120.4 85.5

XC5VLX85–1 10.274 97.3 69.1

XC5VLX85–2 8.790 113.8 80.8

XC5VLX85–3 7.853 127.3 90.4

XC6VLX75T–1 8.775 114.0 80.9

XC6VLX75T–2 7.564 132.2 93.8

XC6VLX75T–3 6.796 147.1 104.4

XC7A100T–1 10.828 92.4 65.6

XC7A100T–2 8.876 112.7 80.0

XC7A100T–3 7.895 126.7 89.9

XC7K160T–1 6.925 144.4 102.5

XC7K160T–2 5.684 175.9 124.9

XC7K160T–3 5.188 192.8 136.8

Max–Log–MAP, 5 iterations, K = 4792, L = 32

12* = length 1552 (194 bytes)
13* = length 984 (123 bytes)
14 = length 1504 (188 bytes)
15 = length 2112 (264 bytes)
16* = length 2384 (298 bytes)
17* = length 2664 (333 bytes)
18* = length 2840 (355 bytes)
19 = length 3200 (400 bytes)
20 = length 3552 (444 bytes)
21* = length 4312 (539 bytes)
22* = length 4792 (599 bytes)
32,33 = length 800 (100 bytes)
34–36* = length 1360 (170 bytes)
37–39* = length 3504 (438 bytes)

* While DEC_END = 0, XD valid for even NA only.
LIMZ Extrinsic Information Limit (1–193)
LXD Decoded symbol log probability (0–14)
M Early Stopping Mode

0 = no early stopping
1 = early stop at odd half iteration
2 = early stop at even half iteration
3 = early stop at any half iteration

MODE Implementation Mode (see Table 3)
NA Half Iteration Number (0–63)
NI Number of Half Iterations (0–63)

NI = 2I–1 where I is number of iterations
R0I Received Data (A)
R1I Received Data (B)
R2I Received Parity (Y1)
R3I Received Parity (Y2)

PCD04D4Small World Communications

312 December 2018 (Version 1.05)

R4I Received Parity (W1)
R5I Received Parity (W2)
RA Received Data Address
RR Received Data Ready
RST Synchronous Reset
SCLZ Extrinsic Information Scale (1–32)
SLD Sliding window select

0 = small window (L = 32)
1 = large window (L = 64)

START Decoder Start
XD Decoded Data Byte
XDA Decoded Data Address
XDE Decoded Data Enable
XDR Decoded Data Ready
ZTH Early Stopping Threshold (1–255)

Table 3: MODE selection

Input Description

MODE0 0 = max–log–MAP
1 = log–MAP

MODE1 0 = rate 1/2
1 = rate 1/3

Table 3 describes each of the MODE[1:0] in-
puts that are used to select various decoder imple-
mentations. Note that MODE[1:0] are “soft” inputs
and should not be connected to input pins or logic.
These inputs are designed to minimise decoder
complexity for the configuration selected.

Note that the required size of each of the 16 in-
ternal interleaver memories is 150x28. This is im-
plemented using 16 512x36 Xilinx BlockRAMs. Al-
though the nominal maximum data length is 4800
bits, the decoder can actually decode up to 8128
bits for SLD = 0 or 8152 bits for SLD = 1.

Turbo Decoder Parameters
For optimal performance, the maximum a

posteriori (MAP) [2] constituent decoder can be
used which is dependent on the signal to noise
ratio (SNR). Unlike other turbo decoders with sub-
optimum soft–in–soft–in (SISO) decoders, using
the MAP (or specifically the log–MAP [3]) algor-
ithm can provide up to 0.5 dB coding gain at low
SNRs. Log–MAP operation is implemented when
MODE0 is high.

With binary phase shift keying (BPSK, m = 1)
or quadrature phase shift keying (QPSK, m = 2)
modulation (see Figure 2) the decoder constant C
should be adjusted such that

C � A�2 m�
2. (1)

where A is the signal amplitude and �2 is the nor-
malised noise variance given by

A–A

01

BPSK

P

Q

QPSK

P

Q

A
 2�–A
 2�

–A
 2�

A
 2�

A
0010

0111

Figure 2: BPSK and QPSK signal sets.

�
2 � 1
(2mREb
N0). (2)

Eb
N0 is the energy per bit to single sided noise
density ratio, R = 1/n is the code rate, K is the data
length, and n = 2 or 3. C should be rounded down
to the nearest integer and limited to be no higher
than 11. Max–log–MAP [3] operation occurs when
C = 0. Due to quantisation effects, C = 1 is equiva-
lent to C = 0. Thus C = 1 is internally rounded down
to C = 0. Also, as C = 2 or 3 give poor performance
due to quantisation effects, these values are inter-
nally rounded up to C = 4. Max–Log–MAP oper-
ation is implemented when MODE0 is low.

For each code (with a particular block size, rate
and number of iterations), there will be a minimum
Eb
N0 where the maximum acceptable BER or
FER is achieved. The value of C should be chosen
for this Eb
N0. This value of C can be kept con-
stant for all Eb
N0 values for this code. For higher
values of Eb
N0, there will be negligible degrada-
tion in performance, even though C will be higher
than optimal [4]. For lower Eb
N0 values, there
could be up to a few tenths of a dB degradation,
since C will be lower than optimal. However, this
should not have much impact since the BER or
FER will already be above the maximum accept-
able level anyway.

For fading channels the value of A and �2

should be averaged across the block to determine
the average value of C. Each received value rk
should then be scaled by (A�2)
(Ak�

2
k) where Ak

and �2
k are the amplitude and normalised variance

of rk . Note that this scaling should be performed
for both the log–MAP and max–log–MAP algor-
ithms for optimal performance.

The value of A directly corresponds to the 6–bit
signed magnitude inputs (shown in Table 4). The

PCD04D4Small World Communications

412 December 2018 (Version 1.05)

Figure 3: Simplified block diagram of PCD04D4 16 state turbo decoder.

16 150x28
DPRAMs

ZI
RI

ZO

128 128

28

MUX

S

16

4 MAP Decoders

ZI[27:0]

Interleaver
Memories

28

MUX

S

32
WxS[1:0]
x=0 to 15

�

D QFI

FO RI

RO72
RxI[11:0]

28
ZI[27:0]

�

128 128

28
XD

2

�

ZI
RI

ZO

128 128

FI

FO RI

RO72

28
ZI[111:84]

128 128

28
XD

2RxI[5:0],
RxI[23:18]

D Q28

28

28

RxS[3:0]
x=0 to 3

x=0 to 5

28 ZI[111:84]

XD[1:0]

XD[7:6]

6–bit inputs have 63 quantisation regions with a
central dead zone. The quantisation regions are
labelled from –31 to +31. For example, one could
have A = 15.7. This value of A lies in quantisation
region 16 (which has a range between 15.5 and
16.5).

Table 4: Quantisation for R0I[5:0], etc.

Decimal Binary Range

31 011111 30.5	�
30 011110 29.5	30.5

� � �
2 000010 1.5	2.5

1 000001 0.5	1.5
0 000000 –0.5	0.5

33 100001 –1.5	–0.5
34 100010 –2.5	–1.5

� � �
62 111110 –30.5	–29.5
63 111111 –�	–30.5

Since most analogue to digital (A/D) con-
verters do not have a central dead zone, a 7–bit
A/D should be used and then converted to 6–bit as
shown in the table. This allows maximum perform-
ance to be achieved.

For signed magnitude inputs a decimal value
of 32 has a magnitude of 0 (equivalent to –0). Ex-
ternal two’s complement values will need to be

converted to sign magnitude for input to the de-
coder. Note that for two’s complement decimal 32
(integer –32), this needs to be limited to decimal
33 (integer –31).

For input data quantised to less than 6–bits,
the data should be mapped into the most signifi-
cant bit positions of the input, the next bit equal to
1 and the remaining least significant bits tied low.
For example, for 3–bit received data R0T[2:0],
where R0T[2] is the sign bit, we have R0I[5:3] =
R0T[2:0] and R0I[2:0] = 4 in decimal (100 in bi-
nary). For punctured input data, all bits must be
zero, e.g., R1I[5:0] = 0.

Due to quantisation and limiting effects the
value of A should also be adjusted according to
the received signal to noise ratio.

Example 1: Rate 1/3 BPSK code operating at
Eb
N0 = 0.3 dB. From (2) we have �2 = 1.39988.
Assuming A = 9.0 we have from (1) that C = 6
rounded down to the nearest integer.

Figure 3 gives a simplified block diagram of the
PCD04D4 16 state turbo decoder. The extrinsic
information output for each of the four data sym-
bols is given by four 9–bit values within the MAP
decoder. To reduce the number of bits, two bits of
ZO indicates the symbol with the smallest ex-
trinsic information, with three eight bit values giv-
ing the scaled and limited extrinsic information of
the other three symbols, minus the extrinsic in-
formation of the symbol with the smallest extrinsic

PCD04D4Small World Communications

512 December 2018 (Version 1.05)

R1

Figure 4: Timing diagram for L = K/8.

L

F0 F0

R0 R0
E0

F1

R1
E1

F1 F1

F0

R2

F2

R2
E2

F2 F2

R3

F3

R3
E3

F3 F3

Time
0 L 2L 3L

2L

3L

K/2

0

Index

information. This gives increased performance
compared to using the extrinsic information for
each of the two decoded bits, which entails a loss
of information. The remaining two bits of ZO are
the hard decision values of the received data.

For even half iterations (odd NA), data is de-
coded for the interleaved received data. This
means that data must be read in interleaved order.
Due to the nature of the ARP interleaver, this
would imply that the input memory (which is exter-
nal to the decoder) would need to be implemented
using 16 separate memories, the same as for the
interleaver memory. To avoid this, we add a
delayed version of the received data to the decod-
er extrinsic information for odd half iterations. For
even half iterations, only the extrinsic information
is output. This implies the input memory can be
implemented using a single memory.

The above also explains the two hard decision
bits in ZO. These bits are needed to determine the
estimated error output ERR for even half iter-
ations.

The sliding window algorithm used depends on
K/8 and L. For K/8 = L, Figure 4 shows how the for-
ward and reverse state metrics (SM) are calcu-
lated. The horizontal axis shows decoder time.
The vertical axis the received symbol index. An
arrow going up shows forward SMs for L symbols.
An arrow going down shows reverse SMs for L
symbols. Horizontal dashed arrows going back-
wards indicates SMs being passed between iter-
ations. Forward SMs are indicated by an F and re-
verse SMs by R. Forward SMs that have been rev-
ersed in time are indicated by E. Decoded data is
output when R and E are used together.

We see that in this case the RAMs are read in
forward blocks of L. Decoded data is written in rev-
ersed blocks of L. Also, the SMs are allowed to
settle for L symbols before being used. As L can
be very small, e.g., L = 14 for K = 112, this is not
sufficient to obtain reliable SMs. Thus, we pass

F2

Figure 5: Timing diagram for L < K/8 � 2L.

R0 R0E0
F0

R1 F1
R1

E1

R2 R2E2

R3

Index

0
0

Time

� �

K/8

L 2L 3L 4L

F3
R3

E3
K/4

R11

Figure 6: Timing diagram for 2L < K/8 � 3L.

R0 R0E0

F1

R1
E1

F0

R1

F2
R2

E2R2

R3 R3E3

F4

R4
E4

F3

R4

Index

0
0

Time

� �

K/8

L 2L 3L 4L 5L

F5
R5

E5R5
K/4

R11

Figure 7: Timing diagram for 3L < K/8 � 4L.

R0 R0E0

F1

R1
E1

F0

R1

F2

R2
E2R2

F3
R3

E3
R3

R4 R4
E4

F5

R5
E5

F4

R5
F6

R6
E6

R6

Index

0
0

Time

� �

K/8

L 2L 3L 4L 5L 6L

F7
R7

E7
R7K/4

both forward and reverse SMs between iterations
to help improve the reliability of the SMs.

Figures 5 to 7 show the timing diagram for vari-
ous cases where K/8 > L. Only the trellis diagrams

PCD04D4Small World Communications

612 December 2018 (Version 1.05)

for the first two MAP decoders are shown. Unlike
the previous case, we read the SMs in reverse
blocks of L and output them in reverse order. We
pass forward SMs between iterations so that the
starting forward SMs become reliable. This is indi-
cated by the dashed arrow going backwards in
time. As the reverse state metrics are reliable
when used to calculate the extrinsic information
there is no need to pass reverse SMs between
iterations.

However, for K/8 > 2L the final SMs of the third
block, for example R3 in Figure 6, are stored and
then passed to the previous MAP decoder. This is
indicated by the dashed arrow going forwards in
time. For L < K/8 � 2L (Figure 5), the reverse SMs
for the second reverse SM calculator are passed
directly between MAP decoders.

For L < K/8 � 3L (Figures 5 and 6), the first re-
verse SM calculator initially uses input data from
the next MAP decoder for the last input block in
time. This is why the RxI inputs shown in Figure
3 have an input width twice that of a single sample
of six bits. This method avoids additional multi-
plexers to select the first reverse SMs from the
next MAP decoder. However, this technique can
not be used for K/8 > 3L as the old extrinsic in-
formation will have been overwritten with new
data. Instead, we use the previously stored re-
verse SMs as shown by the first forward arrow in
Figure 7.

For K/8 > 4L the timing diagrams are similar to
that for 3L < K/8 � 4L (Figure 7). In all cases, we
see that decoding time is equal to K/8+2L. We also
need to add an additional 12 clock cycles for pipe-
line delay, to give a decoding time of K/8+2L+12
clock cycles for each half iteration. Two of the 12
clock cycles are for calculating the a priori in-
formation, eight clock cycles for the MAP decoder
delay and two clock cycles for calculating the mo-
dified extrinsic information. One additional clock
cycle is used to start the turbo decoder.

The number of turbo decoder half–iterations is
given by NI, ranging from 0 to 63. NI = 2I–1 where
I is the number of iterations. This is equivalent to
0.5 to 32 iterations. The decoder initially starts at
half iteration NA = 0, increasing by one until NI is
reached or at an earlier time if early stopping is en-
abled. The NA output can be used to select LIMZ
and SCLZ values, which is useful for max–log–
MAP decoding.

The turbo decoder speed fd is given by

fd �
FdK

(NI � 1)(K
8 � 2L � 12) � 1
(3)

where Fd is the CLK frequency and L is the MAP
decoder sliding window length. Table 5 gives the
value of L depending on K and SLD. SLD = 0 can
be used to increase decoder speed, while SLD =
1 should be used for high puncturing rates to in-
crease performance.

Table 5: Sliding window length

K L

min max SLD=0 SLD=1

40 256 K/8 = 5..32 K/8 = 5..32

264 512 32 K/8 = 33..64

520 4800 32 64

For example, if Fd = 100 MHz and I = 5 (NI =
9) the decoder speed ranges from 20.7 Mbit/s for
K = 112 and L = 14 to 71.0 Mbit/s for K = 4792 and
L = 32.

An important parameter is LIMZ, the limit value
for the extrinsic information. Extrinsic information
is the “correction” term that the MAP decoder de-
termines from the received data and a priori in-
formation. It is used used as a priori information for
the next MAP decoding or half iteration. By limiting
the correction term, we can prevent the decoder
from making decisions too early, which improves
decoder performance. The limit factor LIMZ
should vary between 1 and 193. We recommend
that 193 be used.

Another parameter that can used to adjust de-
coder performance is SCLZ which ranges from 1
to 32. The extrinsic information is scaled by
SCLZ/32 followed by rounding to the nearest inte-
ger. Thus, when SCLZ = 32, no scaling is per-
formed. For log–MAP decoding we recommend
SCLZ = 29. For max–log–MAP decoding we re-
commend SCLZ = 23. The NA output can be used
to adjust LIMZ and SCLZ with the number of iter-
ations for optimum performance.

There are four decoder operation modes given
by M. Mode M = 0 decodes a received block with
a fixed number of iterations (given by NI). Modes
1 to 3 are various early stopping algorithms. Early
stopping is used to stop the decoder from iterating
further once it has estimated there are zero errors
in the block. Mode 1 will stop decoding after an
odd number of half–iterations. Mode 2 will stop de-
coding after an even number of half iterations.
Mode 3 will stop after either an odd or even
number of half iterations. Further details are given
in the next section.

PCD04D4Small World Communications

712 December 2018 (Version 1.05)

Interleaver parameters
The interleaving equation is given by

�(j) � (Pj � Q(jmod 4) � 3) mod K
2 (4)

where j varies from 0 to K/2–1. Table 6 gives the
formulas for Q(j).

Table 6: Interleaver Parameters

j Q(j)

0 0
1 4Q1

2 4Q0P + 4Q2

3 4Q0P + 4Q3

The parameters P and Q0 to Q3 depend on the
block length K. These values are given in the stan-
dard. P is an odd number while Q0 to Q3 can be
odd or even numbers. To reduce interleaver com-
plexity, we let P(j) = Q(j) mod K/2 for j = 1 to 3. We
have that

Q(j) � D(j)K
2 � P(j) (5)

where D(j) = Q(j) div K/2. As four divides Q(j) and
K/2, four must also divide P(j). That is

Q(j)
4 � D(j)K
8 � P(j)
4. (6)

Since P(j)/4 < K/8 the decoder uses Pj = Q(j)/4
mod K/8 for j = 1 to 3 for the internal parameters.
The term Q(0) does not need to be externally input
since it is always zero. We also let P0 = P div 2.

When KS[5:0] = 0, the byte length K/8 is input
to K[12:3] and the interleaver parameters P0 to P3
are input to P0I[6:1] and P1I[11:2] to P3I[11:2], re-
spectively. Internally, the two least significant bits
PjI[1:0] = 0, 1�j�3, and least significant bit P0I[0]
= 1.

When KS[5:0] > 0, the internal data length se-
lected by KS (equal to the Waveform ID) is used.
Also, the internal interleaver parameters P0 to P3
for the data length from the standard are used.
The inputs K[12:3], P0I[6:1], and P1I[11:2] to
P3I[11:2] are ignored.

With four parallel MAP decoders, the inter-
leaver addresses are given by

r(i, m) � �(i � mK
8) mod K
8 (7)

s(i, m) � �(i � mK
8) div K
8 (8)

where r(i,m) is the address of the depth K/8 RAM,
s(i,m) selects one of the four RAMs, i is the input
RAM address from 0 to K/8–1, m is the input select
address from 0 to 3 and j = i + mK/8 is the input
address for the interleaver. We have that
r(i, m) � (P(i � mK
8) � Q((i � mK
8) mod 4)

� 3) mod K
8

� (Pi � Q((i � mK
8) mod 4) � 3)
mod K
8 (9)

If one of the three following conditions

Q(j) mod K
8 � 0, 1 � j � 3 (10)

Q(1) mod K
8 � Q(3) mod K
8,
Q(2) mod K
8 � 0, K
8 mod 2 � 0, (11)

K
8 mod 4 � 0 (12)
is satisfied, then r(i,m) = �(i) mod K/8. This implies
that all four pairs of decoded bits will have the
same write address. Thus, the decoded output
XD[7:0] will be valid for all values of NA[5:0].

However, if all of the above conditions are not
satisfied, then XD[7:0] will have different address-
es for each pair of bits for odd NA[5:0] (even half
iterations). Thus, XD[7:0] will only be valid for
even NA[5:0] (odd half iterations) where non–
interleaved decoding is performed.

Internal to the decoder, the property that Q(j)
is a multiple of four is used to split the interleaver
memory into 16 separate memories is used. This
allows correct read and write operations of the ex-
trinsic information, regardless if the above condi-
tions are satisfied.

Turbo Decoder Operation
After the START signal is sent, the decoder will

read the received data at the CLK speed. It is as-
sumed that the received data is stored in one syn-
chronous read RAM of size (K/8)x24n, with n = 4
or 6 for rate 2/n decoding.

For input RiI[6j+5:6j][k], i = 0 to 5, j = 0 to 3, and
k = 0 to K/8–1, the input data corresponds to code
symbol 6(K/8)j+6k+i. The read address for input
RiI is given by RA. The received data for A, B, Y1,
Y2, W1 and W2 are input to R0I to R5I, respective-
ly.

The received data ready signal RR goes high
to indicate the data to be read from the address
given by RA[9:0]. The parity check equations for
the code are

(1 � D � D2 � D4)A � (1 � D2 � D4)B
� (1 � D3 � D4)Y � 0 (13)

(1 � D2 � D3 � D4)A � (1 � D � D2 � D4)B
� (1 � D3 � D4)W � 0 (14)

The decoder then iteratively decodes the re-
ceived data for NI+1 half iterations, rereading the
received data for each half iteration for either T1
= 2L CLK cycles for K/8 = L or T2 = L((K/8–1) div
L)+L CLK cycles for K/8 > L. For K/8 � 3L, the sig-
nal RR goes high for either T1 or T2 CLK cycles
while data is being output. For K/8 > 3L, RR is high
for T2–L CLK cycles and then goes high again at
the (K/8)th CLK cycle for T2–K/8 CLK cycles.

PCD04D4Small World Communications

812 December 2018 (Version 1.05)

CLK

Figure 8: Turbo Decoder Input Timing (K = 112, L = 14, first half iteration).

RR

RA 1 20 11

RxI

3 12 13

...

...

...

...

...

...
DEC_END

START

R0 R1 R2 R10 R11 R12 R13

4

R3

Figure 8 illustrates the decoder timing where
the data is input during the first half iteration. The
input Rk, for k = 0 to K/8–1 corresponds to input
data RiI[23:0][k], i = 0 to 5.

Note that while DEC_END is low (decoding is
being performed), the START signal is ignored,
except for the last clock cycle before DEC_END
goes high. If the code is being changed, then
START must wait until DEC_END goes high,
otherwise, it can go high in the last clock cycle.

A synchronous reset is also provided. All flip
flops in the turbo decoder are reset during a low
to high transition of CLK while RST is high.

The decoded data is output during the last
half–iteration on XD[7:0]. That is, decoded data is
output 8–bits every CLK cycle. For k = 0 to K/8–1

and j = 0 to 3 we have XD[2j] = A
^

jK
8�k and

XD[2j+1] = B
^

jK
8�k. The signal XDR goes high for
K/8 CLK cycles while the block is output. If NI is
even (odd half iterations), the block is output in re-
verse block sequential order. To dereverse the de-
coded data, the output XDA[9:0] needs to be used
as the write address to a buffer RAM.

For NI odd (even half iterations), the block is
output in reverse block interleaved order. To der-
everse and deinterleave the block, the output
XDA[9:0] is used as the write address to a buffer
RAM. Note that this is only valid if one of the condi-
tions in (10) to (12) are satisfied.

The bus ERR[7:0] is a channel error estimator
output. It is the exclusive OR of XD[7:0] and the
sign bits of R0I[23:0] and R01I[23:0], i.e., bits
R0I[6j+5] and R1I[6j+5] for j = 0 to 3.

The DEC_END signal is low during decoding.
At the end of decoding, DEC_END goes high. Fig-
ure 9 illustrates the decoder timing where data is

output on the last half iteration. After startup, the
maximum number of clock cycles for decoding is
(NI+1)(K/8+2L+12).

During the last half iteration the decoded and
error data are stored into the interleaver memory.
This occurs correctly for all half iterations, unlike
the XD output while DEC_END = 0. Once decod-
ing has been completed, the input XDE can be
used to sequentially clock the decoded and error
data from from the interleaver memory (regard-
less of the number of iterations). XDE is disabled
while the decoder is iterating. Figure 10 shows the
decoder timing when XDE is used.

The early stopping algorithm uses the magni-
tude of the extrinsic information to determine
when to stop. As the decoder iterates, the magni-
tudes generally increases in value as the decoder
becomes more confident in its decision. By com-
paring the smallest magnitude of a block with thre-
shold ZTH, we can decide when to stop. If the
smallest magnitude is greater than ZTH, i.e., not
equal or less than ZTH, the decoder will stop iter-
ating if early stopping has been enabled.

Since the last half iteration is used to store the
decoded data into the interleaver memory, the de-
coder performs an extra half iteration once the
threshold has been exceeded.

Increasing ZTH will increase the average
number of iterations and decrease the BER. De-
creasing ZTH will decrease the average number
of iterations and increase the BER. In general,
higher values of SNR will decrease the number of
iterations. A value of ZTH = 23 was found to give
a good trade off between the average number of
iterations and BER performance.

For high SNR operation early stopping can
lead to significantly reduced power consumption,

PCD04D4Small World Communications

912 December 2018 (Version 1.05)

CLK

Figure 9: Turbo Decoder Output Timing (K = 112, L = 14).

XDR

XDA 12 1113 0

X13

1

X12 X11 X1 X0

Even NA

XDA 13 62 3

X2

6

X13 X6 X6 X3

Odd NA

DEC_END

XD, ERR, LXD

XD, ERR, LXD

...

...

...

...

...

...

...

(not valid in this case)

since most blocks will be decoded in one or two
iterations.

LXD Output
The output LXD[15:0] is an estimate of the

logarithm of the probability of the four decoded
symbol outputs (four bits for each symbol). In the
probability domain, this value ranges from 0.25 to
1 as there are four symbols. In the log domain, this
corresponds to a range from 0 to 14.

The LXD output is formed by taking the min*
operation (equivalent to the max* operation, but in
the minus log domain) of the log–likelihood ratios
of each of the four symbols, where the most likely
symbol is used as the reference symbol. A fixed
look–up table for the correction term in the min*
operation is used to allow operation at high signal

to noise ratio (otherwise, due to finite quantisation,
all LXD values would equal zero).

The LXD output can be used to determine the
reliability of a decoded output by summation of the
K/2 LXD values. Thus, one can compare the reli-
ability of the decoded data for different conditions,
choosing the decoded data that has the highest
summation of LXD values.

Simulation Software
Free software for simulating the PCD04D4

turbo decoder in additive white Gaussian noise
(AWGN) or with external data is available by
sending an email to info@sworld.com.au with
“pcd04d4sim request” in the subject header. The
software uses an exact functional simulation of

CLK

Figure 10: XDE Timing (K = 112).

XDE

XDA 0 1 12 13

XDR

X0

0 1

...

...

...

...

...DEC_END

2

X1 X2 X12 X13 X0 X1

...

XD, ERR, LXD

PCD04D4Small World Communications

1012 December 2018 (Version 1.05)

the PCD04D4 turbo decoder, including all quan-
tisation and limiting effects.

After unzipping pcd04d4sim.zip, there should
be pcd04d4sim.exe and code.txt. The file code.txt
contains the parameters for running pcd04d4sim.
These parameters are

kt No. of data bits (1)
nt No. of coded bits (2 or 3)
m Encoder memory (2 to 4)
g0 1st divisor polynomial of CC in octal
g1 2nd divisor polynomial of CC
g2 1st numerator polynomial of CC
g3 2nd numerator polynomial of CC
q Number of quantisation bits (1 to 6)
EbNomin Minimum Eb/N0 (in dB)
EbNomax Maximum Eb/N0 (in dB)
EbNoinc Eb/N0 increment (in dB)
optC Input scaling parameter (normally 0.5)
ferrmax Number of frame errors to count
Pfmin Minimum frame error rate (FER)
Pbmin Minimum bit error rate (BER)
NI Number of half iterations–1 (0 to 63)
SLD MAP decoder delay select (0 or 1)
LIMZ Extrinsic information limit (1 to 193)
SCLZ Extrinsic information scale (1 to 32)
M Stopping mode (0 to 4)
ZTH Extrinsic info. threshold (0 to 255)
KS Data length select (–1 to 22, 32 to 39)
K Block length (40 to 8128)
P0 1st interleaver parameter (odd number)
P1 2nd input interleaver parameter
P2 3rd input interleaver parameter
P3 4th input interleaver parameter
Q0 1st DVB–RCS2 interleaver parameter
Q1 2nd DVB–RCS2 interleaver parameter
Q2 3rd DVB–RCS2 interleaver parameter
Q3 4th DVB–RCS2 interleaver parameter
LOGMAP Log–MAP decoding (MODE0, 0 or 1)
enter_C Enter external C (y or n)
C C (0 to 11)
state State file (0 to 2)
s1 Seed 1 (1 to 2147483562)
s2 Seed 2 (1 to 2147483398)
out_screen Output data to screen (y or n)
read_x Use external information data (y or n)
read_r Use external received data (y or n)
out_dir Output directory
in_dir Input directory

The parameter optC is used to determine the
“optimum” values of A and C. The “optimum” value
of A is

A �
optC(2q�1 � 1)

mag(�)
(15)

where �2 is the normalised noise variance given
by (2) and mag(�) is the normalising magnitude re-
sulting from an auto–gain control (AGC) circuit.
We have

mag(�) � �
2
�

� exp� –1
2�2

� 1 � 2Q�1

�

 (16)

where Q(x) is the error function given by

Q(x) � �
�

x

1
2�� exp�–t2

2

dt. (17)

Although mag(�) is a complicated function, for
high signal to ratio (SNR), mag(�) � 1. For low

SNR, mag(�) � � 2
�� � 0.798�. That is, an
AGC circuit for high SNR has an amplitude close
to the real amplitude of the received signal. At
lower SNR, the noise increases the estimated am-
plitude, since an AGC circuit averages the re-
ceived signal amplitude.

For the “optimum” A, we round down the value
of C given by (1) to the nearest integer. If LOG-
MAP = MODE0 = 0 then C is forced to 0. For LOG-
MAP = 1, if C is greater than 11, C is limited to 11.
If C = 1, C is rounded down to 0. If C = 2 or 3, C
is rounded up to 4. An external value of C can be
input by setting enter_C to y.

For KS > 0, internal interleaver parameters as
specified by the standard are used. For KS = 0, the
parameters P = P0 and P(1) = P1 to P(3) = P3 are
used. For KS < 0, P = P0 and Q0 = Q0 to Q3 = Q3
are used. The software then calculates P(1) to
P(3) for use by the interleaver.

The simulation will increase Eb/N0 (in dB) in
EbNoinc increments from EbNomin until EbNomax
is reached or the frame error rate (FER) is below
or equal to Pfmin or the bit error rate (BER) is
below or equal to Pbmin. Each simulation point
continues until the number of frame errors is equal
to ferrmax. If ferrmax = 0, then only one frame is
simulated.

An optional Genie aided stopping mode can be
selected by setting M = 4. This will stop the decod-
er from further iterations when the Genie has de-
tected there are no errors compared to the trans-
mitted data. This allows a lower performance
bound to be simulated, allowing fast simulations
for various configurations at low bit error rates.
This option is not available in the decoder core.

When the simulation is finished the output is
given in, for example, file k472.dat, where K = 472.
The first line gives the Eb/N0 (Eb/No), the number
of frames (num), the number of bit errors in the
frame (err), the total number of bit errors (berr),
the total number of frame errors (ferr), the aver-

PCD04D4Small World Communications

1112 December 2018 (Version 1.05)

Figure 11: Rate 1/3 BER performance with K
= 472, max–log–MAP and auto–stopping.

1e-006

1e-005

0.0001

0.001

0.01

0.1

1

0 0.5 1 1.5

B
E

R

Eb/No (dB)

I = 5.0
I = 7.5

I = 10.0

age number of iterations (na), the average BER
(Pb) and the average FER (Pf). Following this, the
number of iterations, na, berr, ferr, Pb, and Pf
are given for each half iteration.

The following file was used to give the simula-
tion results shown in Figure 11 for K = 472 (KS =
4) and max–log–MAP decoding. Auto–stopping
was used with up to 10 iterations. When iterating
is stopped early, the nasum (2*num*na), berr and
ferr results at stopping are copied for each half
iteration to the maximum iteration number. Figure
12 shows the average number of iterations with
Eb/N0.

{kt nt m g0 g1 g2 g3}
 1 3 4 17 15 3 6
{q EbNomin EbNomax EbNoinc optC}
 6 0.00 1.50 0.25 0.45
{ferrmax Pfmin Pbmin}
 128 1e–99 1e–5
{NI SLD LIMZ SCLZ M ZTH}
 19 0 193 21 3 23
{KS K P0 P1 P2 P3 Q0 Q1 Q2 Q3}
 4 112 9 8 48 16 2 2 8 0
{LOGMAP enter_C C}
 0 n 6
{state s1 s2 out_screen}
 0 12345 67890 y
{read_x read_r out_dir in_dir}
 n n output input

Figure 12: Average number of iterations with R =
1/3, K = 472, max–log–MAP and auto–stopping.

0

2

4

6

8

10

0 0.25 0.5 0.75 1 1.25 1.5

na

Eb/No (dB)

I = 10.0
I = 7.5
I = 5.0

Figure 13 shows the performance of the turbo
decoder for various block sizes, log–MAP and
max–log–MAP decoding. For max–log–MAP de-
coding, optC = 0.5 and SCLZ = 22 were used for
K = 112 and 304. For K = 472 and 680, optC = 0.51
and SCLZ = 21 were used. Typically, log–MAP
gains an additional 0.07 to 0.1 dB coding gain at
a BER of 10–5 compared to max–log–MAP.

Table 7 gives the parameters optC, A, C and
SCLZ that were found to give the best perform-
ance for various code rates at a bit error rate
(BER) of around 3�10–2 for 10 iterations (NI =
19), R = 1/2, M = 3, ZTH = 23, LIMZ = 193 and log–
MAP decoding. Using these parameters for higher
Eb/N0 values should result is very little perform-
ance degradation.

Table 7: Simulation parameters

K Eb /N0
(dB)

optC A C SCLZ BER
10–2

112 1.40 0.50 14.08 5 31 3.02

304 1.10 0.45 12.54 4 31 2.43

472 0.97 0.45 12.47 5 32 2.96

680 0.90 0.44 12.16 4 32 2.38

The state input can be used to continue the si-
mulation after the simulation has been stopped,
e.g., by the program being closed or your com-
puter crashing. For normal simulations, state = 0.
While the program is running, the simulation state
is alternatively written into state1.dat and
state2.dat. Two state files are used in case the
program stops while writing data into one file. To
continue the simulation after the program is
stopped follow these instructions:
1) Copy the state files state1.dat and state2.dat.
This ensures you can restart the program if a mis-
take is made in configuring code.txt.

PCD04D4Small World Communications

1212 December 2018 (Version 1.05)

Figure 13: Rate 1/2 performance with various block sizes, auto–stopping
(ZTH = 23), log–MAP and max–log–MAP.

1e-006

1e-005

0.0001

0.001

0.01

0.1

1

0 0.5 1 1.5 2 2.5 3 3.5

B
E

R

Eb/No (dB)

K = 112 (Max-log-MAP)
K = 112 (log-MAP)

K = 304 (Max-log-MAP)
K = 304 (log-MAP)

K = 472 (Max-log-MAP)
K = 472 (log-MAP)

K = 680 (Max-log-MAP)
K = 680 (log-MAP)

2) Examine the state files and choose one that
isn’t corrupted.
3) Change the state parameter to 1 if state1.dat is
used or 2 if state2.dat is used.
4) Restart the simulation. The output will be ap-
pended to the existing k(K).dat file.
5) After the simulation has been completed, make
sure that state is changed back to 0.

The software can also be used to encode and
decode external data. To encode a block
x_(K).dat in the directory given by in_dir, set
read_x to y, e.g., x_472.dat in directory input
(each line contains one bit of data). The data is
input in the order A(0) B(0) ... A(K/2–1) B(K/2–1).

The encoded stream y_(K).dat will be output
to the directory given by out_dir, e.g., y_472.dat
to directory output. The encoded data is output in
the order A(0) B(0) ... A(K/2–1) B(K/2–1) Y1(0)
Y2(0) ... Y1(K/2–1) Y2(K/2–1) W1(0) W2(0) ...
W1(K/2–1) W2(K/2–1).

To decode data, place the received block of
data in file r_(K).dat in directory in_dir and set
read_r to y. The decoded data is output to
xd_(K).dat in directory out_dir. The file
r_(K).dat has in each line R[i,j], i = 0 to 3 or 5
from j = 0 to K/2–1, e.g., the first three lines of rate
1/2 data could be

–31 1 –25 27

–31 12 –4 9

 11 31 31 2

The input data is of the form

R[i,j] = A*(1–2*Y[i,j]+N[i,j])

where A is the signal amplitude, Y[i,j] is the coded
bit, and N[i,j] is white Gaussian noise with zero
mean and normalised variance �2. The magnitude
of R[i,j] should be rounded to the nearest integer
and be no greater than 2q–1–1. If read_r = y, then
C is externally input via C.

Ordering Information
SW–PCD04D4–SOS (SignOnce Site License)
SW–PCD04D4–SOP (SignOnce Project License)
SW–PCD04D4–VHD (VHDL ASIC License)

All licenses include EDIF and VHDL cores.
The VHDL cores can only be used for simulation
in the SignOnce and University licenses. The Uni-
versity license is only available to tertiary educa-
tional institutions such as universities and col-
leges and is limited to n instantiations of the core.

PCD04D4Small World Communications

1312 December 2018 (Version 1.05)

The SignOnce and ASIC licenses allows unlimited
instantiations.

Note that Small World Communications only
provides software and does not provide the actual
devices themselves. Please contact Small World
Communications for a quote.

References
[1] EBU–UER and DVB, “Digital video broad-

casting second generation interactive satel-
lite system (DVB–RCS2) Part 2: Lower
layers for satellite standard,” ETSI EN 301
545–2 V1.1.1, Jan. 2012.

[2] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv,
“Optimal decoding of linear codes for mini-
mizing symbol error rate,” IEEE Trans. In-
form. Theory, vol. IT–20, pp. 284–287, Mar.
1974.

[3] P. Robertson, E. Villebrun, and P. Hoeher, “A
comparison of optimal and sub–optimal
MAP decoding algorithms operating in the
log domain,” ICC’95, Seattle, WA, USA, pp.
1009–1013, June 1995.

[4] M. C. Reed and J. A. Asenstorfer, “A novel
variance estimator for turbo–code decod-
ing,” Int. Conf. on Telecommun., Melbourne,
Australia, pp. 173–178, Apr. 1997.

Small World Communications does not as-
sume any liability arising out of the application or
use of any product described or shown herein; nor
does it convey any license under its copyrights or
any rights of others. Small World Communica-
tions reserves the right to make changes, at any
time, in order to improve performance, function or
design and to supply the best product possible.
Small World Communications will not assume re-
sponsibility for the use of any circuitry described
herein. Small World Communications does not re-
present that devices shown or products described
herein are free from patent infringement or from
any other third party right. Small World Communi-
cations assumes no obligation to correct any er-
rors contained herein or to advise any user of this
text of any correction if such be made. Small

World Communications will not assume any liabili-
ty for the accuracy or correctness of any engineer-
ing or software support or assistance provided to
a user.
� 2015 Small World Communications. All

Rights Reserved. Xilinx, Spartan and Virtex are
registered trademark of Xilinx, Inc. All XC–prefix
product designations are trademarks of Xilinx,
Inc. 3GPP is a trademark of ETSI. All other trade-
marks and registered trademarks are the property
of their respective owners.

Supply of this IP core does not convey a
license nor imply any right to use turbo code pat-
ents owned by France Telecom, GET or TDF.
Please contact France Telecom for information
about turbo codes licensing program at the follow-
ing address: France Telecom R&D – VAT/Turbo-
codes, 38 rue du Général Leclerc, 92794 Issy
Moulineaux Cedex 9, France.

Small World Communications, 6 First Avenue,
Payneham South SA 5070, Australia.
info@sworld.com.au ph. +61 8 8332 0319
http://www.sworld.com.au fax +61 8 8332 3177

Version History
� 0.00 22 January 2015. Preliminary product spe-

cification.
� 1.00 2 February 2015. First official release.

Added performance curves and parameters.
� 1.01 11 February 2015. Added option to input

P(1) to P(3) for BER simulation software. Cor-
rected description of Q0 to Q3 parameters.
Added description of x_(K).dat and y_(K).dat
files. Corrected r_(K).dat description. Added
enter_C description.

� 1.02 22 February 2015. Updated Table 1.
� 1.03 22 April 2015. Deleted large–log–MAP op-

tion. Changed range of C values for small–log–
MAP (now called log–MAP). Improved log–
MAP performance. Simplified internal RA gen-
eration.

� 1.04 30 May 2015. Minor corrections.
� 1.05 12 December 2018. Clarified XD[7:0] out-

put.

