
114 August 2023 (Version 1.08)

Small World Communications
LCD01C CCSDS

(8160,7136) LDPC Decoder

14 August 2023 (Version 1.08) Product Specification

LCD01C Features
LDPC Decoder
� CCSDS compatible
� Rate 223/255 (8160,7136)
� Includes ping–pong input and output memories
� Up to 488 MHz internal clock
� Up to 3.5 Gbit/s with 10 decoder iterations
� 6–bit sign–magnitude input data
� Up to 64 iterations
� Scaled min–sum decoding algorithm
� Optional power efficient early stopping
� Parity check output
� 23,453 6–input LUTs, 166 18KB BlockRAMs.

26,800 Altera ALUTs, 166 M9Ks.
� Asynchronous logic free design
� Free simulation software
� Available as EDIF and VHDL core for Xilinx

FPGAs under SignOnce IP License. ASIC,
Intel/Altera, Lattice and Microsemi/Actel cores
available on request.

Introduction
The LCD01C is a fully compatible CCSDS rate

223/255 (8160,7136) LDPC [1] error control de-
coder. A regular quasic–cyclic LDPC code with
511x511 square circulants with weight 2 in the
parity check matrix is used. There are 2x16 circul-
ants, resulting in a check node degree of 32 and
a variable node degree of 4.

In each clock cycle, 12 check nodes (12x32 =
384 messages) or 96 variable nodes (96x4 = 384
messages) are fully decoded. Each iteration re-
quires 86 clock cycles to calculate the check or va-
riable messages plus a 7 clock cycle pipeline
delay. The scaled min–sum iterative decoding al-
gorithm [2] is used.

Optional early stopping allows the decoder to
reduce power consumption with no degradation in
performance. The decoder contains two sets of
message memories so that check and variable
calculations can be performed in parallel. Two
input memories are used to buffer the input data.

Figure 1 shows the schematic symbol for the
LCD01C decoder. The EDIF core can be used
with Xilinx Foundation or Integrated Software En-
vironment (ISE) software to implement the core.
The VHDL core can be used with Xilinx ISE or Vi-

CLK

Figure 1: LCD01C schematic symbol.

XDA[9:0]

R[35:0]

XDR

RS

RST

NI[5:0]

RE
RR

RCLK

M

XD[7:0]

XCLK

RA[10:0]

CHK

vado software. Custom VHDL cores can be used
in ASIC designs.

Table 1 shows the performance achieved with
various Xilinx parts. Tcp is the minimum clock pe-
riod over recommended operating conditions.
These performance figures may change due to
device utilisation and configuration. Note that
Zynq devices up to XC7Z020 and from XC7Z030
use programmable logic equivalent to Artix–7 and
Kintex–7 devices, respectively.

Table 1: Performance of Xilinx parts.

Xilinx Part Tcp (ns)  Mbit/s

XC7S75–1 6.447 1133

XC7S75–2 5.314 1375

XC7A75T–1 6.341 1152

XC7A75T–2 5.264 1388

XC7A75T–3 4.627 1579

XC7K70T–1 4.607 1586

XC7K70T–2 3.876 1885

XC7K70T–3 3.474 2103

XCKU035–1 4.120 1773

XCKU035–2 3.481 2099

XCKU035–3 2.880 2537

XCKU3P–1 2.620 2789

XCKU3P–2 2.292 3188

XCKU3P–3 2.049 3566

Signal Descriptions
CHK Parity Check
CLK System Clock



LCD01CSmall World Communications

214 August 2023 (Version 1.08)

M Early Stopping Mode
NI Number of Iterations minus one (0–63)

I = NI+1 wjere I is number of iterations
R Received Data (eight 6–bit samples)
RA Received Data Address
RCLK Received Data Clock
RE Received Data Enable
RR Received Data Ready
RS Received Data Start
RST Synchronous Reset
XCLK Decoded Data Clock
XD Decoded Data
XDA Decoded Data Address
XDR Decoded Data Ready

LDPC Decoder Parameters
We model the received sample at time i as

r i � A(si � ni) (1)

where A is the no–noise amplitude, si  is the modu-
lated signal with value +1 for coded bit yi  = 0 and
–1 for yi  = 1, ni  is additive white Gaussian noise
(AWGN) with normalised variance

�
2 � 1	(2REb	N0) (2)

and R = 7136/8160 = 0.8745 is the code rate.
The value of A directly corresponds to the 6–bit

signed magnitude inputs (shown in Table 2). The
6–bit inputs have 63 quantisation regions sym-
metric about zero. The quantisation regions are
labelled from –31 to +31. For example, one could
have A = 15.7. This value of A lies in quantisation
region 16 (which has a range between 15.5 and
16.5). Note that symbols 0 and 32 (+0 and –0)
have the same quantisation range of –0.5 to 0.5.
For best performance, we recommend A = 23.

For input data quantised to less than 6–bits,
the magnitude information should be mapped into
the least significant bit positions of the input, with
the sign bit mapped into the most significant bit.
For a symmetric and even number of quantisation
levels the least significant bit should always be 1.
For example, for 4–level quantisation the input va-
lues should be –3, –1, 1 and 3.

Due to quantisation and limiting effects the
value of A should be adjusted according to the re-
ceived signal to noise ratio.

The number of LDPC decoder iterations is de-
termined by NI, ranging from 0 to 63. NI = I–1
where I is the number of iterations. This is equiva-
lent to 1 to 64 iterations. The decoder initially
starts at iteration 0, increasing by one until NI is re-
ached or an earlier time if early stopping is en-
abled.

Table 2: Quantisation for received data.

Decimal Binary Range

31 011111 30.5��
30 011110 29.5�30.5

� � �
2 000010 1.5�2.5
1 000001 0.5�1.5
0 000000 –0.5�0.5

32 100000 –0.5�0.5

33 100001 –1.5�–0.5
34 100010 –2.5�–1.5

� � �
62 111110 –30.5�–29.5
63 111111 –��–30.5

The LDPC decoder speed fd is given by

fd �
FdK

(NI � 1.5)(�(N–K)	C�� D)
(3)

where Fd is the CLK frequency, K = 7136 is the
input data length, N = 8160 is the number of coded
bits, C = 12 is the number of parallel check node
decoders and D = 7 is the decoder pipeline delay.
Using these parameters for NI = 9 (10 iterations)
gives fd = 7.308Fd. Due to synchronisation of the
received data to the start of each iteration, the
total time taken is NI+1.5 iterations on average.

LDPC Decoder Operation
Figure 2 gives a simplified block diagram of the

LCD01C decoder. Each of the depth 256 RAMs
are configured as simple dual port RAMs with only
address locations 0 to 85 and 128 to 213 being
used. For a circulant size of 511 and six 6–bit mes-
sages being read or written at a time, this implies
the first 85 addresses have six messages with the
86th address having only one message. To sim-
plify accessing the messages, the remaining five
messages repeat the first five messages.

The basic operation for each RAM involves re-
ading and writing six 6–bit messages in 86 clock
cycles. Before the first iteration, received data that
was stored at RCLK in the 1st Inputs RAMs are
read at CLK into the Check RAMs and 2nd Input
RAMs. Check and variable messages are then
calculated and stored in succession, reading input
data from the the 2nd Input RAMs for the variable
message calculations.

Using the two halves of the depth 256 RAMs
allows the decoder to work on two sets of received
data simultaneously. This allows an effective
doubling of the decoder speed.



LCD01CSmall World Communications

314 August 2023 (Version 1.08)

Figure 2: Simplified block diagram of LCD01C decoder.

R Shift
Circuit

256x36

1st Input
RAMs

x16

256x36

Check
RAMs

x64

36 96

576
2304

Check
Calculators

x12
2304

256x36

2nd Input
RAMs

x16

Variable
Calculators

x96
2304

256x36

Variable
RAMs

x64 576

2304

2304

256x84

Output
RAMs

256x84

84

84
XD

8
84

In order to equalise the pipeline delay of the
Check and Variable Calculators to seven clock
cycles each, check messages are written and
read in sequential order, with the variable mes-
sages read and written in deinterleaved order.
This is because 511 mod 6  is not zero, which re-
quires complex shifting circuits of the data to per-
form the read and write of the six messages in the
correct order.

Each of the 12 Check Calculators inputs 32
6–bit sign magnitude messages and outputs 32
6–bit two’s complement messages. This is per-
formed in five stages using 31 min and next–min
circuits. The min circuit finds the minimum of the
previous two min values, while the next–min cir-
cuit finds the next largest minimum value from the
previous two min and next–min values.

A lookup table is used to scale each of the final
min and next–min values by 0.8, rounding down to
the nearest integer. Rounding down is used to pre-
vent over estimation of the check messages,
which results in degraded performance.

The message location of the final min value
outputs the final next–min value, with all other 31
message locations using the final min value. The
messages are then converted to two’s comple-
ment, using the XORed sign bits of the 32 input
messages.

Each of the 96 Variable Calculators inputs four
6–bit two’s complement messages and one re-
ceived 6–bit  sign magnitude value. Two’s comple-
ment messages are used as this facilitates addi-
tion of the messages. The outputs are four 6–bit
sign magnitude messages and one hard decision
bit if the received data corresponds to a data bit.
Since 14 of the circulant array columns corres-
pond to data bits, 14x6 = 84 bits are stored in each
clock cycle.

As the basic code is of length 16x511 = 8176,
the first 18 bits are set to zero, to produce a length
8158 code. Two dummy 0 bits are then added
which increases the code length to 8160. For each

iteration, the first three Variable Calculators sets
the messages for these bits to 31, ensuring these
bits are ignored by the Check Calculators. Note
that the multiplexer before the Check RAMs is
actually in the Variable Calculators, so that before
the first iteration, these bits are correctly set to 31.
The last two received values are ignored.

On the last iteration decoded data are stored
in the two Output RAMs at CLK. Complex address
and multiplexer select generation are then used to
read the Output RAMs at XCLK so as to select the
decoded 8–bit output in the correct order.

The received data ready RR signal when high
indicates when the decoder can accept data.
When low, this indicates that new data must not be
input to the decoder in the next clock cycle. That
is, RS and RE must remain low in the next clock
cycle.

If RR is high, received data can be input six
6–bit samples at a time in the next clock cycle. The
received data start RS signal is used to start
counting. The received data enable RE must be
high once and only once for each valid data that
is input. Valid data can only be input after RS goes
high. A received data address output RA[10:0] is
provided for reading received data from an exter-
nal synchronous read input memory. Data read
from the input memory must be held if RE goes
low as shown in Figure 3.

When all the input data have been input, RR
will go low for 4 RCLK cycles. If the other half of
the 1st Input RAMs are available, RR will go high,
indicating that the next block may be input. If both
halves of the 1st input RAMs are full, then RR will
stay low. RR will not go high again until the one of
the halves in the 1st Input RAMs becomes avail-
able.

If the frequency of RCLK is greater than 1.5
times the frequency of CLK, RR may go high too
soon for correct decoder operation. In this case,
the waiting period after RR goes low should be
one RCLK cycle plus two CLK cycles.



LCD01CSmall World Communications

414 August 2023 (Version 1.08)

RCLK

Figure 3: LDPC Decoder Input Timing.

RE

R R0 R1 R2

...

...

... R1356 R1357 R1358 R1359

...RS

R3

RR ...

RA ...0 1 2 3 1357 1358 1359 04 0

Inputs R[35:0], RS and RE must be syn-
chronous to RCLK. Internal decoding uses CLK.

Figure 3 illustrates the decoder input timing.
Each received sample Rj , 0 ≤ j ≤ 1359 represents
six 6–bit samples R[35:0], Rj  = {r6j+5,...,r6j} and ri ,
0 ≤ i ≤ 8159 corresponds to the received 6–bit
sample at time i.

Figure 4 illustrates the decoder output timing.
Ignoring the number of clock cycles required to
input and output the data, the maximum average
number of clock cycles for decoding is (NI+1)
( (N–K)/C+D). Since two received blocks are de-
coded in parallel, the decoder delay is 2(NI+1)
( (N–K)/C+D) clock cycles.

The decoded block is output from one of the
output RAMs after a block has been decoded. The
signal XDR goes high for 892 XCLK cycles while
the block is output. The block is output in sequen-
tial order with address XDA[9:0]. Note that for the
first 8–bit decoded symbol XD[7:0], bit XD[7] cor-
responds to the first received symbol, that is
R[5:0].

There are two decoder operation modes given
by M. Mode M = 0 decodes a received block with
a fixed number of iterations (given by NI). Mode M
= 1 uses an early stopping algorithm. Early stop-
ping is used to stop the decoder from iterating
further once all the parity checks have been satis-
fied in the block.

For high SNR operation early stopping can
lead to significantly reduced power consumption,
since most blocks will be decoded with a small
number of iterations.

Parity Check Output
The CHK output provides an indication if the

parity checks were satisfied during the last iter-
ation. This output is valid while XDR is high. Note
that the check is performed before the last vari-
able calculation. It is not performed on the de-
coded output. If CHK is high this indicates the pari-
ty checks were satisfied, indicating that there are
probably no errors in the decoded data. If CHK is

XCLK

Figure 4: LDPC Decoder Output Timing.

XDR

XDA 1 20 888 889

X0

3 890 891

...

...

...

...X1 X2 X3 X888 X889 X890 X891XD

...CHK



LCD01CSmall World Communications

514 August 2023 (Version 1.08)

low, this indicates the checks were not satisfied
and there are probably errors in the decoded data.

Computer simulations show that the probabili-
ty of a missed detection, that is the proportion of
frames that have errors where CHK = 1 (checks
satisfied), is very low. We did not see any events
of this type in our simulations. This means that if
CHK = 1 it is very likely that there are no errors in
the decoder data.

However, the probability of false detection, that
is the proportion of frames that have no errors
where CHK = 0 (checks not satisfied), can be high.
For a low number of iterations or low SNR, the
probability is very close to one. That is, nearly all
frames that have no errors are falsely detected to
have errors. As the number of iterations increases
and the SNR increases the probability decreases
to zero.

Simulation Software
Free software for simulating the LCD01C

LDPC decoder in additive white Gaussian noise
(AWGN) or with external data is available by
sending an email to info@sworld.com.au with
“lcd01csim request” in the subject header. The
software uses an exact functional simulation of
the LCD01C LDPC decoder, including all quan-
tisation and limiting effects.

After unzipping lcd01csim.zip, there should be
lcd01csim.exe and code.txt. The file code.txt con-
tains the parameters for running lcd01csim.
These parameters are

EbNomin Minimum Eb/N0 (in dB)
EbNomax Maximum Eb/N0 (in dB)
EbNoinc Eb/N0 increment (in dB)
optC Input scaling parameter (normally 0.75)
ferrmax Number of frame errors to count
Pfmin Minimum frame error rate (FER)
Pbmin Minimum bit error rate (BER)
state State file (0 to 2)
s1 Seed 1 (1 to 2147483562)
s2 Seed 2 (1 to 2147483398)
q Number of quantisation bits (1 to 6)
NI Number of iterations–1 (0 to 63)
M Stopping mode (0 to 1)
out_dir Output directory
in_dir Input directory
read_x Use external information data (y or n)
read_r Use external received data (y or n)
out_screen Output data to screen (y or n)

The parameter optC is used to determine the
“optimum” value of A given by

A �
optC Qmax

mag(�)
(4)

where Qmax = 31 is the maximum input magni-
tude, �2 is the normalised noise variance given by
(2) and mag(�) is the normalising magnitude re-
sulting from an auto–gain control (AGC) circuit.

We recommend using optC = 0.75, which re-
sults in A being approximately equal to 23.

We have

mag(�) � �
2
�


 exp� –1
2�2
�� 1 � 2Q�1

�
� (5)

where Q(x) is the error function given by

Q(x) � 

�

x

1
2�
 exp�–t2

2
�dt. (6)

Although mag(�) is a complicated function, for
high signal to ratio (SNR), mag(�) � 1. For low

SNR, mag(�) � � 2	�
  � 0.798�. That is, an
AGC circuit for high SNR has an amplitude close
to the real amplitude of the received signal. At
lower SNR, the noise increases the estimated am-
plitude, since an AGC circuit averages the re-
ceived signal amplitude.

The simulation will increase Eb/N0 (in dB) in
EbNoinc  increments from EbNomin until EbNomax
is reached or the frame error rate (FER) is below
or equal to Pfmin or the bit error rate (BER) is
below or equal to Pbmin. Each simulation point
continues until the number of frame errors is equal
to ferrmax. If ferrmax = 0, then only one frame is
simulated.

When the simulation is finished the output is
given in file k7136.dat, where K = 7136. The first
line gives the Eb/N0 (Eb/No), the number of frames
(num), the number of bit errors in the frame (err),
the total number of bit errors (berr), the total
number of frame errors (ferr), the average
number of iterations (na), and the average BER
(Pb) and the average FER (Pf). Following this, the
number of iterations, na, berr, ferr, Pb, Pf,
number of missed detections (miss),  number of
false detections (fd), missed detection rate
(Pmiss) and false detection rate (Pfd) are given for
each half iteration.

The following file was used to give the BER and
FER simulation results shown in Figures 5 and 6,
respectively. Auto–stopping was used. When iter-
ating is stopped early, the nasum (num*na), berr,
ferr,  miss and  fd results at stopping are copied
for each half iteration to the maximum iteration
number. Thus, the I = 10 result is the performance
one would measure with auto–stopping and NI =
9.



LCD01CSmall World Communications

614 August 2023 (Version 1.08)

Figure 7 shows the average number of iter-
ations with Eb/N0.  Figure 8 shows the false detec-
tion rate with Eb/N0.

{EbNomin EbNomax EbNoinc optC}
 3.0     5.0     0.1     0.75
{ferrmax Pfmin Pbmin}
 64      1e–99 1e–7
{state s1    s2}
 0     12345 67890
{q  NI  M}
 6  9   1
{out_dir  in_dir  read_x  read_r
out_screen}

 dat      input   n       n       y

The state input can be used to continue the si-
mulation after the simulation has been stopped,
e.g., by the program being closed or your com-
puter crashing. For normal simulations, state = 0.
While the program is running, the simulation state
is alternatively written into State1.dat and
State2.dat. Two state files are used in case the
program stops while writing data into one file. To
continue the simulation after the program is
stopped follow these instructions:

Figure 5: BER performance with auto–stop-
ping and 10, 20 and 50 iterations.

1e-008

1e-007

1e-006

1e-005

0.0001

0.001

0.01

0.1

3 3.2 3.4 3.6 3.8 4 4.2

B
E

R

Eb/No (dB)

I = 10
I = 20
I = 50

Figure 6: FER performance with auto–stop-
ping and 10, 20 and 50 iterations.

1e-006

1e-005

0.0001

0.001

0.01

0.1

1

3.2 3.4 3.6 3.8 4 4.2

FE
R

Eb/No (dB)

I = 10
I = 20
I = 50

1) Copy the state files State1.dat and State2.dat.
This ensures you can restart the program if a mis-
take is made in configuring code.txt.
2) Examine the state files and choose one that
isn’t corrupted.
3) Change the state parameter to 1 if State1.dat
is used or 2 if State2.dat is used.
4) Restart the simulation. The output will be ap-
pended to the existing k7136.dat file.
5) After the simulation has been completed, make
sure that state is changed back to 0.

Figure 7: Average number of iterations.

0

10

20

30

40

50

3 3.2 3.4 3.6 3.8 4 4.2

na

Eb/No (dB)

I = 50
I = 20
I = 10



LCD01CSmall World Communications

714 August 2023 (Version 1.08)

Figure 8: False detection rate with auto–stop-
ping and 10, 20 and 50 iterations.

1e-005

0.0001

0.001

0.01

0.1

1

3.2 3.4 3.6 3.8 4 4.2

Fa
ls

e 
D

et
ec

tio
n 

R
at

e

Eb/No (dB)

I = 10
I = 20
I = 50

The software can also be used to encode and
decode external data. To encode a block
x_7136.dat in the directory given by in_dir, set
read_x to y, e.g., x_7136.dat in directory input
(each line contains one byte of data in hexadeci-
mal with the left most bit corresponding to the first
encoded bit). The encoded stream y_7136.dat
will be output to the directory given by out_dir.

To decode data, place the received block of
data in file r_7136.dat in directory in_dir and set
read_r to y. The decoded data is output to
xd_7136.dat in directory out_dir. r_7136.dat
has in each line R[i], i = 0 to N–1 in decimal form,
e.g., the first three lines could be

–25
 9
 31

The input data is of the form

R[i] = A*(1–2*Y[i]+N[i])

where A is the signal amplitude, Y[i] is the coded
bit, and N[i] is white Gaussian noise with zero
mean and normalised variance �2. For Q odd, the

magnitude of R[i] should be rounded to the
nearest integer and be no greater than Qmax.

Ordering Information
SW–LCD01C–SOS (SignOnce Site License)
SW–LCD01C–SOP (SignOnce Project License)
SW–LCD01C–VHD (VHDL ASIC License)

All licenses include EDIF and VHDL cores.
The SignOnce and ASIC licenses allows unlimited
instantiations. The EDIF core can be used for Vir-
tex–2, Spartan–3 and Virtex–4 with Foundation or
ISE software. The VHDL core can be used for Vir-
tex–5, Spartan–6, Virtex–6, 7–Series, UltraScale
and UltraScale+ with ISE or Vivado software.

Note that Small World Communications only
provides software and does not provide the actual
devices themselves. Please contact Small World
Communications for a quote.

References
[1] Consultative Committee for Space Data

Systems, “TM synchronization and channel
coding,” CCSDS 131.0–B–2, Aug. 2011.

[2] J. Chen and M. P. C. Fossorier, “Near opti-
mum universal belief propagation based de-
coding of low–density parity check codes,”
IEEE Trans. Commun., vol. 50, pp. 406–414,
Mar. 2002.

Small World Communications does not as-
sume any liability arising out of the application or
use of any product described or shown herein; nor
does it convey any license under its copyrights or
any rights of others. Small World Communica-
tions reserves the right to make changes, at any
time, in order to improve performance, function or
design and to supply the best product possible.
Small World Communications will not assume re-
sponsibility for the use of any circuitry described
herein. Small World Communications does not re-
present that devices shown or products described
herein are free from patent infringement or from
any other third party right. Small World Communi-
cations assumes no obligation to correct any er-
rors contained herein or to advise any user of this
text of any correction if such be made. Small
World Communications will not assume any liabili-
ty for the accuracy or correctness of any engineer-
ing or software support or assistance provided to
a user.
� 2012–2023 Small World Communications.

All Rights Reserved.  Xilinx, Spartan, Virtex,
7–Series, Zynq, Artix, Kintex, UltraScale and Ul-
traScale+ are registered trademarks and all XC–



LCD01CSmall World Communications

814 August 2023 (Version 1.08)

prefix product designations are trademarks of Ad-
vanced Micro Devices, Inc. and Xilinx, Inc. All
other trademarks and registered trademarks are
the property of their respective owners.

Small World Communications, 6 First Avenue,
Payneham South SA 5070, Australia.
info@sworld.com.au ph. +61 8 8332 0319
http://www.sworld.com.au fax +61 8 7117 1416

Revision History
� v0.00 16 Aug. 2012. Preliminary product speci-

fication.
� v0.01 26 Oct. 2012. Changed input from R[47:0]

to R[35:0]. Increased decoder speed by 50%.
� v0.02 4 Feb. 2013. Updated Altera complexity.

Deleted SYNC input. Added XCLK input. Up-
dated decoder operation.

� v1.00 23 Mar. 2013. Added performance of Xi-
linx parts and BER performance simulations.
Added simplified block diagaram and its de-
scription.

� v1.01 10 May 2013. Added RA[10:0] output.
Changed input buffer RAM to shift circuit, reduc-
ing wait delay from 16 to 4 RCLK cycles.

� v1.02 22 Jul. 2013. Corrected input and output
file names for simulation software.

� v1.03 15 Oct. 2013. Added CHK output. Cor-
rected RA and RR output for synchronous read
input memory. Updated Figure 5, simulation
descripton and added frame error rate and false
alarm rate simulation figures.

� v1.04 25 Nov. 2014. Added out_screen param-
eter for simulation software.

� v1.05 13 Feb. 2015. Corrected decoder speed
for M = 0 and 1.

� v1.06 19 Feb. 2015. Corrected decoder speed
for M = 0.

� v1.07 3 Apr. 2015. Updated core to allow full
speed decoding with M = 1. Updated Kintex–7
decoder speed.

� v1.08 14 Aug. 2023. Deleted Virtex–4, Virtex–5
and Virtex–6 performance. Updated Artix–7 and
Kintex–7 performance and complexity. Added
Spartan–7, UltraScale and UltraScale+ per-
formance.


